Санкт-Петербургский Государственный Университет
Реферат
Идентификация параметров осциллирующих процессов в живой природе, моделируемых дифференциальными уравнениями
Выполнила студентка 312гр.
Варламова А.А.
Проверил Токин И.Б
Санкт-Петербург
2007
Оглавление
1. Идентификация параметров в системах описываемых ОДУ
1.1 Градиентные уравнения
1.2 Уравнения в вариациях
1.3 Функционалы метода наименьших квадратов
1.4 Численное решение градиентных уравнений
1.4.1 Полиномиальные системы
1.4.2 Метод рядов Тейлора
1.4.3 Метод Рунге-Кутта
2. Модели осциллирующих процессов в живой природе
2.1 Модель Лотки
2.1.1 Осциллирующие химические реакции
2.1.2 Осцилляция популяций в системе “хищник-жертва”
2.2 Другие модели
3. Идентификация параметров модели Лотки
3.1 Дифференциальные уравнения
3.2 Постановки задачи идентификации и функционалы МНК
3.3 Как ускорить вычисления
3.4 Численный эксперимент
4. О других методах идентификации
Литература
1. Идентификация параметров в системах, описываемых ОДУ
1.1 Градиентные уравнения
Градиентные уравнения возникают в связи с задачей нахождения экстремумов функций многих аргументов. Важно, что эти аргументы сами могут зависеть от решений каких-то уравнений - численных, дифференциальных и иных. Мы будем использовать их для минимизации функций аргументов, за-висящих от решений обыкновенных дифференциальных уравнений.
Рассмотрим вещественнозначную функцию аргумента
,
и пусть
и
. Тогда величина
(1)
то есть производная функции по направлению
характеризует скорость изменения
при изменении
в направлении вектора
.
Из формулы (1) получаем:
(2)
где - градиент функции
, а это дает:
(3)
(4)
(5)
Таким образом, вектор является направлением наискорейшего рос-та функции
в точке
, а вектор
- это направление наискорейшего ее убывания в этой точке.
Градиентной кривой функции называют кривую
,
, касательное направление к которой в каждой точке
противоположно направлению вектора градиента
, то есть сов-падает с направлением наискорейшего убывания
.
Это означает, что удовлетворяет дифференциальному уравнению:
(6)
или в координатной форме:
(7)
К уравнениям (6) или (7) добавляем начальные условия:
(8)
или в координатной форме:
(9)
Решение задачи Коши (6),(8) (или (7),(9)) определяет градиентную кривую проходящую через точку . Будем рассматривать это решение как век-тор-функцию
аргументов
и
.
Зададимся теперь целью найти точку локального минимума неотрицательной функции
, если она существует и достаточно близка к
. Если за начальное приближение для
взять
, то движение вдоль градиентной кривой, проходящей через
(то есть движение вдоль траектории решения
) можно считать идеальным путем к точке
.
Если решение задачи (6),(8) существует при , то при любом та-ком
получаем, что:
при
(11)
при
(12)
и мы вправе ожидать, что
(13)
Метод градиентных уравнений нахождения локального минимума функции заключается в численном интегрировании задачи Коши (6),(8) вдоль оси
до достижения точки
, достаточно близкой к
.
... , то необходимость в дополнительной линии передачи вообще отпадает при передаче энергии на сотни километров, поскольку вся излучаемая энергия может быть перехвачена приемным устройством с апертурой приемлемых размеров. В диапазоне субмиллиметровых волн отношение допустимых размеров апертур к длине волны заметно уменьшается, тем не менее в ряде случаев подобные квазиоптические линии передачи могут ...
0 комментариев