1.2. Требования, предъявляемые к преобразованиям


Рассмотрим свойства, которые являются важными при кодировании изображений.

1. Масштаб и ориентация. Для эффективного представления изображения важную роль играет масштаб. В изображениях имеются объекты самых различных размеров. Поэтому, преобразование должно позволять анализировать изображение одновременно (и независимо) на различных масштабах. Для двумерного сигнала некоторая спектральная область соответствует определенному масштабу и ориентации. Ориентация базисных функций определяет способность преобразования корректно анализировать ориентированные структуры, типичные для изображений. Примером могут служить контуры и линии. Таким образом, для решения задачи анализа желательно иметь преобразование, которое бы делило входной сигнал на локальные частотные области.

2. Пространственная локализация. Кроме частотной локализации, базисные функции должны быть локальными и в пространстве. Необходимость в пространственной локализации. Преобразования возникает тогда, когда информация о местоположении деталей изображения является важнейшей. Эта локальность, однако, не должна быть «абсолютной», блочной, как при ДКП, так как это ведет к потере свойства локальности в частотной области.

Наиболее часто применяемый подход при анализе заключается в следующем: сигнал дискретизируется, затем выполняется ДПФ. В результате сначала сигнал раскладывается по базису единичного импульса, который не имеет частотной локальности, а затем по базису синусоид с четными и нечетными фазами, не имеющих пространственной локальности. Конечно, представление сигнала в частотной области исключительно важно для его анализа. Однако это не означает, что выбор функций импульса и синусоиды для решения этой задачи является наилучшим. Еще в 1946 году Д.Габор предложил класс линейных преобразований, которые обеспечивают локальность и в частотной, и во временной области. Базис единичного импульса и базис синусоиды могут рассматриваться как два экстремальных случая этих преобразований. Вейвлеты являются еще одним примером функций, хорошо локализованных в пространственной и частотной областях.

3. Ортогональность. Преобразование не обязательно должно быть ортогональным. Так, ортогональность обычно не рассматривается в контексте субполосного кодирования, хотя вейвлет как правило, является ортогональным. Ортогональность функций упрощает многие вычисления. Кроме того «сильно» неортогональное преобразование может быть неприемлемо для кодирования.

4. Быстрые алгоритмы вычисления. Это, наверное, наиболее важное свойство. Так как невозможность практической реализации преобразования в реальном масштабе времени сводит на нет все его положительные свойства.


2. ПРИМЕНЕНИЕ ВЕЙВЛЕТ – ПРЕОБРАЗОВАНИЯ ДЛЯ СЖАТИЯ ИЗОБРАЖЕНИЯ


В последнее десятилетие в мире наблюдается значительный интерес к сжатию изображений. Это вызвано стремительным развитием вычислительной техники, графических мониторов, цветных принтеров, а также цифровой техники связи. Изображение представляется в цифровом виде достаточно большим количеством бит. Так, цветная картинка размером 512х512 требует для своего хранения 768 кБайт. Если передавать видеопоследовательность таких картинок со скоростью 25 кадров в секунду, требуемая скорость составит 188.7 Мбит / с.

Различают сжатие изображений без потерь и с потерями. Первое характеризуется незначительными коэффициентами сжатия (от 3 до 5 раз) и находит применение в телевидении, медицине, аэрофотосъемке и других приложениях. При сжатии изображения с допустимыми потерями коэффициент сжатия может достигать сотен раз. Популярность вейвлет – приобразования (ВП) во многом объясняется тем, что оно успешно может использоваться для сжатия изображения как без потерь, так и с потерями. Так, коэффициент сжатия видеосигнала в видеокодеках семейства ADV6xx варьируется от 3 до 350 и больше раз.

Причин успешного применения несколько.

1. Известно, что вейвлет - хорошо аппроксимирует преобразование Карунена - для фрактальных сигналов, к которым относятся и изображения.

2. Дисперсии коэффициентов субполос ортонормального вейвлет – приобразования распределены в широком диапазоне значений. Пусть дисперсии кодируются простым энтропийным кодером. Тогда стоимость кодирования всего изображения есть сумма кодирования субполос. Различные энтропии субполос приведут к стоимости кодирования значительно меньшей, чем при непосредственном кодировании изображения.

3. В результате этого перераспределения дисперсий коэффициенты вейвлет - имеют существенно негауссовскую статистику и, таким образом, меньшую энтропию, чем гауссовский сигнал той же дисперсии.

4.Наконец, коэффициенты вейвлет - имеют регулярные пространственно-частотные зависимости, которые с успехом используются в ряде алгоритмов кодирования.

Рассмотрим основные проблемы, возникающие при сжатии изображения при помощи вейвлет – приобразования и возможные пути их решения.



Информация о работе «Технология вейвлетов»
Раздел: Информатика, программирование
Количество знаков с пробелами: 30627
Количество таблиц: 1
Количество изображений: 3

Похожие работы

Скачать
67501
0
36

... ів у буферний ЗП контролера клавіатури та дисплея. Але під час виконання роботи був знайдений більш ефективний метод для аналізу пульсової хвилі – вейвлет-аналіз, якому і присвячений наступний розділ. 3. СУТНІСТЬ ВЕЙВЛЕТ-АНАЛІЗУ   Вейвлет-перетвореня сигналів є узагальненням спектрального аналізу, типовий представник якого - класичне перетворення Фур'є. Застосовувані для цієї мети базиси ...

Скачать
88503
15
14

... для выявления нестационарных составляющих сигнала, что крайне полезно при подборе способов фильтрования сигнала с помощью структурной индексации. В результате построения подсистемы вейвлет-анализа система многомасштабного анализа дискретных сигналов (МАДС) дополнит свои функциональные возможности способностью выделения из исходного сигнала наиболее четких его составляющих, что должно быть учтено ...

Скачать
14053
0
2

... JPEG. Новые технологии, такие как фрактальные должны рассматриваться не только как конкуренты, но и как союзники в установлении новых стандартов. Алгоритм SPIHT (Пространственно Упорядоченные Иерархические Деревья) представляет собой метод сжатия изображений с потерями и обладает высокой чувствительностью. Его легко реализовывать, он работает быстро и дает прекрасные результаты при сжатии любых ...

Скачать
21168
0
1

... або напрямоку камери, то параметр повинен бути GL_PROJECTІON. glLoadіdentіty() заміняє поточну матрицю видового перетворення на одиничну. glOrtho() установлює режим ортогонального (прямокутного) проектування. Це значить, що зображення буде рисуватися як в ізометрії. 6 параметрів типу GLdouble (або просто double): left, rіght, bottom, top, near, far визначають координати відповідно лівої, право ...

0 комментариев


Наверх