АНОТАЦІЯ
В даній роботі представлений один із перспективних методів математичного аналізу – вейвлет-перетворення, застосування якого дозволяє оброблювати сигнали будь-якого виду (в даному випадку медико-біологічний, а саме – фотоплетизмограма). Проводиться порівняння з Фур′є-аналізом і обґрунтовано доведено переваги вейвлет-перетворення. Розроблено програмний комплекс для обробки фотоплетизмограми.
ВСТУП
Сьогодні в медичну діагностику впроваджується все більша кількість методів, основаних на застосуванні лазерних та оптико-електронних приладів. До них відноситься і фотоплетизмографічний метод (ФПМ), що дозволяє вимірювати кровонаповнення та кровострум як в потужних венах і артеріях, так і в периферійних судинах і капілярах.
ФПМ у порівнянні з іншими методами діагностики біологічного об'єкту (БО) за оптичними показниками, наприклад з фотоакустичним методом, дозволяє підвищити достовірність реєстрації гемодинамічних показників кровонаповнення, а також те, що введенням в прилади, які реалізують даний метод, елементів світловолоконної техніки і джерел з різноманітними довжинами хвиль зондуючого випромінювання можна достатньо точно вирішувати задачі фотодинамічних досліджень, дистанційних вимірів тих або інших гемодинамічних показників БО.
Розробка нових більш ефективних лазерних та оптико-електронних комп'ютеризованих систем та комплексів та методів диференціальної діагностики стоматологічних захворювань залишається однією із актуальних задач сьогодення.
Оптичний метод діагностики мікроциркуляції судин характеризується достатньо широким діапазоном можливостей реєстрації найрізноманітніших фізіологічних функцій тканин, органів і систем організму. Також відмінною рисою параметрів є їх висока вибірність і точність. Оптичний метод також дозволяє використовувати поряд з лазерними та оптико-електронними датчиками гнучкі скловолоконні світловоди для дослідження мікроциркуляції.
Даний метод дозволяє проводити комплексну оцінку мікроциркуляторного русла по двох важливих показниках: морфологічним ознакам і функціональним характеристикам. Комплексний аналіз дозволяє одержати досить повну інформацію про стан мікроциркуляторного русла в нормі і патології.
За допомогою оптичного методу дослідження визначають ряд функціональних показників, що властиві усередині судин (рівень кровонаповнення, швидкість і характер кровопотоку, тромбоутворення).
Широке розповсюдження серцево-судинних захворювань підтверджує актуальність розробок сучасних приладів діагностики та моніторингу, спрямованих на підвищення ефективності методів та розвиток технічних засобів діагностики таких захворювань.
За останні роки на основі досягнень медичної фізики сформувався новий напрямок - біоінженерія, основною задачею якої є розробка технічних систем і нових високоефективних технологій для діагностики, профілактики, лікування патологічних станів, і реабілітації. Біотехнізація сучасної медицини вимагає нової взаємодії між фізико-технічними і медико-біологічними науками. В багатьох країнах чітко проглядається тенденція до формування біонженерних (медико-технічних) центрів [1].
У даній роботі приводиться огляд одного із сучасних напрямків розвитку вейвлет-аналіза. Насамперед, актуальність даної роботи варто розглядати в контексті бурхливого розвитку вейвлет-аналіза й найширшого кола сфер його застосування. Так, уже зараз вейвлет-аналіз зарекомендував себе як один з ефективних методів кодування сигналів, обробки зображень будь-якої природи, супутникові зображення, рентгенограми внутрішніх органів, архівації даних, аналізу складних особливостей сигналів, об'єднання й поділи сигналів, створення множинного доступу, прихованого зв'язку, спільного кодування джерела й каналу зв'язку, виділення сигналів на фоні шумів, а також інтерес викликає його застосування й у сфері контролю якості передачі інформації.[2]
Взагалі, реально працюючі у додатках математичні методи завжди (чомусь) опираються на чисту математику - це експериментальний факт. А от прикладна сторона вейвлетів проста на стільки, що далі нікуди. При цьому вейвлет-перетворення не тільки працює швидко, але і його програмна реалізація незрівнянно проста[3].
1. ОСОБЛИВОСТІ ВЗАЄМОДІЇ ОПТИЧНОГО ТА ЛАЗЕРНОГО ВИПРОМІНЮВАННЯ З БІОЛОГІЧНИМИ СИСТЕМАМИ
Використання лазерів у біології та медицині може здійснюватися в кількох напрямках, одним з яких можна вважати розробку на основі лазерної техніки приладів та методів для виявлення, ідентифікації, дослідження будови біологічних об’єктів, а також для вивчення природи процесів, що відбуваються в них [4].Застосування лазерів у біології і медицині засновано на використанні широкого кола явищ, пов'язаних із різноманітними проявами взаємодії світла з біологічними об'єктами. Лазерне випромінювання, так само як і звичайне світло, може відбиватися, поглинатися, розсіюватися, перевипромінюватися біологічним середовищем, і кожний із цих процесів несе інформацію про мікро- і макроструктуру цього середовища, рух і форму окремих його складових. Червоне, інфрачервоне (ІЧ) та ультрафіолетове (УФ) світло можуть надавати фотобіохімічну дію. Яскравими прикладами цього є фотосинтез рослин і бактерій, а також механізм зору. Високоінтенсивне світлове випромінювання ультрафіолетового (УФ), видимого червоного та інфрачервоного (ІЧ) діапазонів довжин хвиль робить руйнівну (деструктивну) дію на біологічні об'єкти. Необхідні інтенсивності можна створити і не тільки за допомогою лазерів [3,4]. Таким чином, процеси, що характеризують види взаємодій лазерного випромінювання з біооб'єктами, можна розділити на три групи. До першої відносять усі неспотворювальні взаємодії (принаймні, у межах похибок вимірів, що не здійснюють помітної дії на біооб'єкт), до другого - процеси, у яких виявляється фотохімічна дія, і до третього - процеси, що призводять до фотодеструкції. На рисунку 1 подана класифікація основних принципів застосування лазерів у біології і медицині, що враховує зазначені групи процесів.
Оскільки ми маємо справу з живими об'єктами, то крім фізико-хімічних проявів дії лазерного випромінювання необхідно враховувати його вплив і на функціонування живої матерії. Цей вплив визначається ступенем гомеостазу живого об'єкта [5].
Ступінь гомеостазу характеризує стани і процеси, що забезпечують стабільність організму до зовнішніх втручань, вона є функцією еволюційного розвитку і виявляється найнижчою у біологічних молекул і найвищою в хребетних тварин.
Світло малої інтенсивності не запускає адаптаційні механізми біосистеми, з ростом інтенсивності спочатку це стосується гомеостазу живої системи на локальному рівні, потім включаються загальні адаптаційні і регуляційні механізми системи, що повністю її відновлюють, далі вони вже не справляються з повним відновленням і частково відбуваються необоротні процеси, що наростають і призводять до руйнацій у системі. Проте об'єкт можна ще вважати «живим». При високих інтенсивностях руйнації виявляються настільки значними, що об'єкт уже не може вважатися «живим» [5,6].
У дослідах по порівнянню поглинання червоного випромінювання з різними фізичними властивостями було встановлено, що просторова когерентність не впливає на поглинання, а поляризоване випромінювання поглинається менш активно ніж неполяризоване. Встановлено також, що розсіювання видимого світла при проходженні його через біотканину значно перевищує поглинання. Це означає, що лазерне світло має досить високу здатність проникнення в тканини. Якщо врахувати можливість транспортування випромінювання вглиб тканини при допомозі волоконної оптики і можливе наступне його розсіювання то можна сподіватися на подальше розширення сфери клінічного використання лазерів [6].Вплив лазерного випромінювання на біологічний матеріал або реакція живої тканини на це випромінювання обумовлені взаємодією фотонів і молекул, або з'єднань молекул тканини. Атомарні і молекулярні процеси і наступні біологічні реакції вияснені ще не цілком. Відомі процеси можуть бути підрозділені на фотохімічну взаємодію, термічну взаємодію і нелінійні процеси.
Ступінь того або іншого впливу залежить:
а) від властивостей лазерного випромінювання (довжина хвилі, густота енергії, тривалість опромінення і частота повторення);
б) від властивостей біологічного матеріалу (коефіцієнт поглинання, коефіцієнт розсіювання, густота і т.д.).
У залежності від довжини хвилі, густоти енергії і часу впливу лазерного випромінювання ефект визначається в основному двома внутрішніми параметрами тканини: з одного боку, оптичними властивостями тканини, що опромінюється і, з іншого боку, її термічними властивостями.
При попаданні лазерного променя на тканину можуть спостерігатися три процеси: відбиття, поглинання і/або пропускання - тільки незначний відсоток випромінювання відбивається безпосередньо від поверхні (рисунок 1.1).
Рисунок 1.1 - Оптичні властивості прошарку матерії. Падаючий променевий потік розділяється на три частини: відбита частина Rф, поглинена частина Аф і пропущена частина Тф: Рф+Аф+Тф=1
Промені, що проникають в тканину, частково поглинаються, частково розсіюються і частково пропускаються (рисунок 1.2).
Рисунок 1.2 - Оптичні властивості лазерного променя на шкірі
В залежності від довжини хвилі випромінювання, що падає, відбивається до 60% випромінювання. Розсіювання залежить від негомогенних структур тканини і визначається різними показниками заломлення в різних шарах і різницею між шарами і їх навколишнім середовищем. Хвилі з довжиною набагато більшою, ніж діаметр шару (³ 10 мкм), розсіюються клітинними структурами лише в незначній мірі. Але тому, що електромагнітний спектр широко використовуваних лазерів простягається від ІЧ (1 мм-0,78 мкм) до УФ (0,38-0,10 мкм) діапазону довжин хвиль, ми практично завжди маємо справу з розсіюванням. Глибину проникнення для довжини хвиль більше 1,0 мкм можна розрахувати на основі закону Ламберта-Бера в першому наближенні [7].
Інтенсивність I випромінювання, що пройшло через прошарок товщиною d визначається співвідношенням:
I=I0e-ad, (1.1)
де I0 - інтенсивність при вході в речовину і a - коефіцієнт поглинання.
При застосуванні монохроматичного випромінювання довжиною хвилі l для коефіцієнта поглинання дійсне таке співвідношення:
a = 4pnk/l, (1.2)
причому показники переломлення n і поглинання k є константами для даного середовища. Співвідношення Ламберта-Бера справедливе в тому випадку, коли поглинання набагато перевищує розсіювання [8].
Частіше всього пропонується рішення опису взаємодії лазерного випрмінювання з біотканинами з позицій теорії радіаційного переносу [9], при цьому бiотканина аналізується як випадково-неоднорідне середовище, яке розсіює та поглинає, а випромінювання, що розповсюджується в ній, – як потік енергії, тобто всі ефекти, зв'язані з хвильовою природою світла (дифракція, iнтерференція, поляризація ), не приймаються до уваги.
Основне рівняння теорії радіаційного переносу може бути записане в вигляді
, (1.3)
де I (z, q) – потужність випромінювання, що розповсюджується на глибині z через одиничний майданчик і в одиничному тілесному куті в напрямку, який складає з нормаллю до цього майданчика кут, конус якого рівний q, Вт×м-2×стер-1; mа тa ms – коефіцієнти поглинання і розсіювання, м-1; Р ((q', q) – фазова функція розсіювання, що описує вірогідність того, що світло розповсюджується в напрямку q.
Найкращим чином співвідношення поглинання і розсіювання описане в теорії Кубелки-Мунка [8,9]. Рівняння, що описує поширення випромінювання в середовищах з врахуванням поглинання і розсіювання має вигляд:
dLc(r,z)/dz = -gLc(r,z), (1.4)
де Lc(r,z) - щільність потужності випромінювання [Вт/м2] колімованого променя в місці р (вектор місця) у напрямку z, g - коефіцієнт ослаблення (сума коефіцієнтів розсіювання [м-1] і поглинання [м-1]).
Розсіювання в біологічній тканині залежить від довжини хвилі лазерного променя. Випромінювання ексимерного лазера УФ діапазону (193, 248, 308 і 351 мкм), а також ІЧ-випромінювання 2,9 мкм ErYAG-лазера і 10,6 мкм СО2-лазеру мають глибину проникнення від 1 до 20 мкм [10,11]. Тут розсіювання грає другорядну роль. Для світла з довжиною хвилі 450-590 нм, що відповідає лініям аргону, глибина проникнення складає в середньому 0,5-2,5мм. Як поглинання так і розсіювання грають тут значну роль. Лазерний промінь цієї довжини хвилі хоча і залишається в тканині колімованим у центрі, але він оточений зоною з високим розсіюванням. Від 15% до 40% енергії падаючого пучка світла розсіюється. У області спектра між 590 і 1500 нм, у яку входять лінії Nd:YAG лазера 1,06 і 1,32 мкм, домінує розсіювання. Глибина проникнення складає від 2,0 до 8,0 мм.
... функції, що використовується. Ця ширина називається носієм функції. Якщо вікно досить вузьке, то говорять про компактний носій. Як побачимо надалі, ця термінологія особливо широко використовується в теорії вейвлет-перетворень. Часова інформація при ПФ відсутня. При ВПФ вікно має кінцеву довжину, накриває тільки частину сигналу, тому частотне розрізнювання погіршується. Отже, чим вужче вікно, тим ...
... залежить від віконної функції, що використовується при ВПФ або материнського вейвлета при вейвлет-перетворенні. 3. Апроксимуюча і деталізуюча компоненти вейвлет-аналізу Одна з основних ідей вейвлет-подання сигналу полягає в розбивці наближення до сигналу на дві складові: грубу (апроксимуючу) і витончену (деталізуючу), з подальшим уточненням ітераційним методом. Кожен крок такого уточнення ві ...
... регулирования движения судов: Отчет о НИР (промежуточный) // ХАИ. – 501-4/2002; – Харьков, 2002. – 30 с. АНОТАЦІЯ Жеребятьєв Д.П. Методи обробки динамічних сцен при впливі нестаціонарних завад у радіотехнічних системах супроводження надводних протяжних об'єктів. – Рукопис. Дисертація на здобуття наукового ступеня кандидата технічних наук за фахом 05.12.17 – радіотехнічні та телевізійні ...
... масштабу. (г) Многомасштабне градієнтное зображення Інші автори дотримуються підходу, при якому остаточна картина границь складається на основі аналізу градієнтних зображень від точних масштабів до не точних. При цьому, основними завданнями при такому підході є зменшення впливу шуму, до якого чутливі оператори градієнта малого розміру, і комбінування границь, отриманих на точних масштабах, із ...
0 комментариев