4. Прогнозирование надежности ППП по уровню
собственных шумов.
Многие исследователи, занимающиеся надежностью РЭА, в ряде своих работ, показали, что собственные шумы ППП, электровакуумных приборов, резисторов, штепсельных разъемов, контактов реле и других элементов РЭА несут информацию об их надежности.
По [3] физической основой метода прогнозирования отказов ППП по их низкочастотным шумам является зависимость уровня шума от наличия дефектов структуры и контактов прибора. Основными источниками шума в электрических цепях и активных элементах по [3], [6], [9], [10] являются:
тепловой шум. Существует в любом проводнике или полупроводнике. Среднеквадратичное значение напряжения теплового шума определяется по формуле Найквиста:
(18)
где к - постоянная Больцмана;
Т - постоянная температура;
R - активное внутреннее сопротивление прибора;
f - эквивалентная шумовая полоса.
Этот шум вызывается хаотическим тепловым движением носителей заряда;
дробовый шум. Этот шум возникает вследствие флуктуации концентрации носителей заряда за счет случайности процессов генерации и рекомбинации. Чаще всего для его определения пользуются формулой Шоттки и среднеквадратичное значение шумового тока определяется как
(19)
где q - заряд e;
I - ток, протекающий через компенсаторный переход.
Для ППП с p-n переходами учитывают, что ток через переход является суммой прямого и обратного токов, причем каждому их них присущ дробовый шум. Поэтому в транзисторах дробовые шумы возникают в эмиттерном и коллекторном переходах:
(20)
(21)
где Гэ, Гк - дифференциальные сопротивления эмиттерного и коллекторного переходов;
Iэбо, Iкбо - их обратные токи;
Iэ - прямой ток эмиттерного перехода.
Многими исследователями отмечено, что тепловой и дробовый виды шумов прямо не связаны с дефектами приборов и не содержат дополнительной информации о потенциальной надежности исследуемого прибора.
НЧ шумы. В литературе по надежности РЭА нет еще единой терминалогии для данного вида шума. Встречаются названия: фликкер-шум, шумы мерцания, шумы типа 1/f, избыточные шумы и НЧ шумы.
Причиной возникновения этого шума являются различные дефекты в структурах ППП. Для этого вида шума обычно рассматривают спектральную плотность мощности этого шума, которая пропорциональна величине , где коэффициент характеризует вид спектра. Энергетический спектр шума зависит от источника флуктуации, а так же от полосы пропускания цепей, через которые проходит сигнал. Спектральная плотность мощности шума равна усредненной по времени мощности. Приходящейся на единицу полосы частот, и характеризует распределение мощности в спектре частот. [3]. Спектральная плотность G(f) измеряется следующим образом
(22)
Используется также часто коэффициент шума
(23)
где U2ш.п.- квадрат эффективного напряжения шума, приведенного на вход;
Rг - сопротивление источника сигнала.
Отмечено, что коэффициент шума сильно зависит от сопротивления источника сигнала, что является недостатком этого параметра.
Многие исследователи отметили, что основные виды отказов ППП и интегральных схем (ИС) прогнозируются по уровню их НЧ шумов, поэтому считается, что чрез характеристики НЧ шума можно получить показатели надежности ППП и ИС. В качестве прогнозирующего характера можно использовать любую из рассматриваемых характеристик: Эффективное напряжение шума, коэффициент шума, спектральную плотность мощности, функцию автокорреляции.
Отмечено, что функция автокорреляции и спектральная плотность мощности любого случайного процесса тесно взаимосвязаны и для получения данных об этом процессе ( где отражаются наиболее полно физическая сущность и параметры эт000ого процесса) достаточно измерить одну из этих характеристик. Но, с точки зрения удобства измерений в производственных условиях предпочтение. отдается спектральной плотности мощности шума.
5. Методы измерения НЧ шумов.
По [3] при измерении электрических шумов применяют следующие методы:
метод сравнения. Исследуемый шум сравнивается с эталонным сигналом или шумом. В этом методе измеряются относительные величины и чаще всего метод применяют при измерении коэффициента шума;
компенсаторный метод;
модуляционный метод.
Оба метода дают высокую чувствительность и точность измерений, но реализуются только на высоких частотах. Применяют эти методы при исследовании тепловых и дробовых шумов;
метод непосредственного измерения НЧ шума. Метод основывается на получении спектральной плотности мощности шума на некоторой частоте через измерение эффективного напряжения шума при помощи высокочувствительного измерителя с известной полосой пропускания. Измеритель в общем случае должен содержать: линейный полосовой фильтр (с достаточно узкой полосой пропускания f), квадратичный детектор, интегратор, регистрирующее устройство. В настоящее время наиболее целесообразным считается импульсный режим измерения НЧ шума. Это связано с трудностью установления стационарного теплового режима ППП и ИС, так как доказано, что температура оказывает сильное влияние на основные электрические параметры ППП и ИС.
Рассмотрим по [3] практические схемы, реализующие измерение НЧ шумов ППП.
Структурная схема установки для измерения шумов транзисторов по [3] приведена на рис. 1. Путем измерения питающих напряжений имеем возможность менять режим работы транзистора в широких пределах. При известных режимах [3] (ток эмиттера Iэ>1 mA, напряжение коллектора Uк>3 В), имеем возможность выявления постепенных отказов за счет изменения состояния поверхности, так и внезапных оотказов за счет объемных дефектов и дефектов контактных соединений. Для маломощных транзисторов используют режим измерения коэффициента шума, указанный техническими условиями. Описание работы подробно дается [3]. Измеряют эффективное напряжение шума, приведенное к базе транзистора Uш.б.через коэффициент усиления измерительной установки по напряжению Ки
(24)
где Uс.вых - калибровочное напряжение, измеренное на выходе установки;
Uс.вх - калибровочное напряжение на ходе исследуемого транзистора.
Для более точного измерения спектральной плотности шума измеряют ширину пропускания фильтра, которая определяет ошибку измерения.
(25)
где К(f), К(f0) - значения коэффициентов передачи линейного фильтра на некоторой частоте f и на резонансной частоте f0 соответственно. Коэффициент Ки по [24] можно также определять следующим образом по [3]
(26)
где Кп.у.,Ки.т - коэффициенты усиления предварительного усиления и усилительной схемы на исследуемом транзисторе.
Надо отметить, что для стабильности Ки.т применяется отрицательная обратная связь по току. В общем виде принципиальная схема включения исследуемого транзистора по [3] показана на рис.2.
Малошумящий усилитель - наиболее важная часть установки, определяющей уровень собственных шумов. В настоящее время разработано достаточное количество схем малошумящих усилителей.
Структурная схема для измерения шумов диодов приведена по [3] на рис.3.
Чтобы исключить заметный разброс значений дифференциального сопротивления при заданном токе соблюдают условия Rн
... сети могут быть использованы как классификаторы для разделения образцов рассогласований и формирования сигналов тревог. Таким образом, они могут выявлять и изолировать отказы. 3. Диагностика отказов системы регулирования уровня жидкости в баке 3.1. Постановка задачи Реализацию описанного выше метода диагностики отказов, основанного на моделях будем выполнять применительно к системе ...
... 4,5 - 5,5 В (ATmega16) * Рабочая частота 0 - 8 МГц (ATmega16L) 0 - 16 МГц (ATmega16) Рисунок 1.4 – Функциональная схема микроконтроллера ATMega 16L РАЗДЕЛ 2 РАЗРАБОТКА УСТРОЙСТВА АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ СВЕТА Несмотря на бурное развитие сверхъярких светодиодов, в широкой продаже пока не появились светодиодные лампы, способные заменить бытовые лампы накаливания. Получившие ...
... степеней свободы. Величину критерия Фишера (F-критерий) определяют по формуле: (должно быть). Значимость коэффициентов bi уравнения регрессии определяют по t-критерию (критерии Стьюдента): , . Идентификация объектов управления методом корреляционного анализа Метод корреляционного анализа используется для идентификации объектов управления в том случае, если входные и выходные ...
... ? 8. Какими программами можно воспользоваться для устранения проблем и ошибок, обнаруженных программой Sandra? Раздел 3. Автономная и комплексная проверка функционирования и диагностика СВТ, АПС и АПК Некоторые из достаточно интеллектуальных средств вычислительной техники, такие как принтеры, плоттеры, могут иметь режимы автономного тестировании. Так, автономный тест принтера запускается без ...
0 комментариев