4.7. Пожарная безопасность.
Рабочее помещение должно удовлетворять требованиям по предотвращению и тушению пожара по ГОСТ 12.1.004-85 [14]. Обязательно наличие телефонной связи и пожарной сигнализации.
Материалы, применяемые для ограждающих конструкций и отделки рабочих помещений, должны быть огнестойкими. Для предотвращения возгорания в зоне расположения прибора обычных горючих материалов (бумага) и электрооборудования, необходимо принять следующие меры:
– в цехе динамических испытаний должны быть размещены углекислотные огнетушители типа ОУ-2, ОУ-5, ОУ-8, выбор углекислотного огнетушителя обусловлен тем, что углекислота не проводит электрический ток, с его помощью можно быстро ликвидировать очаг загорания или локализовать огонь до прибытия пожарной команды;
– в качестве вспомогательного средства тушения пожара могут использоваться гидрант или устройства с гибкими шлангами;
– для непрерывного контроля помещения необходима система обнаружения пожаров, так можно использовать извещатели типа КИ-1.
Система должна быть сконструирована так, чтобы обеспечить отключение систем питания и кондиционирования воздуха. В сочетании с системой обнаружения следует использовать систему звуковой сигнализации.
Инженеры-настройщики допускаются к выполнению работ только после прохождения инструктажа по безопасности труда и пожарной безопасности.
В связи с выше сказанным можно сделать выводы о том, что в результате проведенных мероприятий: улучшения освещения рабочего места инженера; защиты от СВЧ – излучения, обеспечения электробезопасности; оптимальных параметров температуры, влажности и давления; снижения уровня шума и обеспечения пожарной безопасности.
Снижается утомляемость глаз, улучшается работоспособность, уменьшается вредное влияние на нервную, сердечно-сосудистую системы и на весь организм в целом. Все это ведет к тому, что повышается безопасность, а следовательно и производительность труда инженера при настройке прибора.
Заключение.
Основными результатами исследований проведенных в дипломной работе являются следующие:
1. Методом анализа по программе «Алмаз» проведен расчет существующего варианта ЭОС прибора КИУ-147. Расчетное значение первеанса первого луча составило 0,57 мкА/В3/2, а максимальное значение коэффициента заполнения канала пучком является недопустимо высоким и составляет 0,875 в области за вторым реверсом. Сделан вывод, о необходимости проведения оптимизации ЭОС с целью улучшения формирования пучка и уменьшения максимального значения коэффициента заполнения.
2. Выполнен анализ причин плохого формирования пучка в существующей ЭОС. Показано, что для улучшения формирования пучка необходимо ликвидировать неламинарность электронных траекторий в области пушки и улучшить фазу встрела пучка в область второго реверса.
3. На основе совокупности методов синтеза и анализа по программам «Синтез» и «Алмаз» рассчитана новая электронная пушка с высокой ламинарностью траекторий формируемого пучка. Первеанс пушки близок к первеансу существующего варианта ЭОС и составляет 0,57 мкА/В3/2.
4. Проведен расчет ЭОС прибора с новой электронной пушкой от катода до коллектора. Показано, что применение новой пушки улучшило ламинарность электронных траекторий. Но радиус электронного потока в выходной части прибора уменьшен не значительно (приблизительно на 7 %). Анализ результатов расчета этого варианта ЭОС свидетельствует о том, что для уменьшения радиуса пучка в выходной части прибора необходимо провести расчет и оптимизацию распределения магнитного поля в ЭОС с новой электронной пушкой.
5. Проанализированы возможные пути оптимизации и распределения магнитного поля существующей ЭОС. Сделан вывод о том, что путь оптимизации ЭОС за счет увеличения амплитуды магнитного поля в системе, может привести к магнитному насыщению перемычек между соседними пролетными каналами в полюсных наконечниках прибора. В этом случае в ЭОС возникают сильные поперечные магнитные поля приводящие к нарушению токопрохождения в приборе. Поэтому такой путь оптимизации ЭОС признан не приемлемым.
6. Выполнена оптимизация ЭОС за счет уменьшения амплитуды используемого магнитного поля. Показано, что уменьшение амплитуды магнитного поля на 200 Гс в области за первым реверсом приводит к уменьшению коэффициента заполнения канала пучком с 0,875 до 0,73. Последующее увеличение амплитуды магнитного поля в области за вторым реверсом на 100 Гс приводит к уменьшению коэффициента заполнения канала пучком в области за вторым реверсом до значения 0,66. Далее был рассчитан вариант ЭОС для случая, когда индукция магнитного поля везде была уменьшена на 5 % по сравнению с предыдущим вариантом. При этом коэффициент заполнения канала пучком в области за вторым реверсом достиг приемлемого значения равного 0,57. Это свидетельствует о том, что поставленная в дипломе задача полностью выполнена.
Список литературы.
1. Молоковский С.И., Сушков А.Д. Интенсивные электронные и ионные пучки. – М.: Энергоатомиздат, 1991. – 302 с.
2. Алямовский И.В. Электронные пучки и электронные пушки. – М.: Советское радио, 1966. – 456 с.
3. Чечерников В.И. Магнитные измерения. Под ред. Проф. Кондорского Е.И. – М.: Московский университет, 1963. – 283 с.
4. Невский П.В. Теория В.Т. Овчарова и примеры ее использования при расчете электронно-оптических систем электровакуумных приборов. Обзоры по электронной технике. Серия 1. Электроника СВЧ. Выпуск 15 (1483) – М.: ЦНИ Электроника, 1989. – 48 с.
5. Великанов К.М., Власов В.Ф., Карандашова К.С. Экономика и организация производства в дипломных проектах. – Л.: Машиностроение, 1977. – 207 с.
6. Методические указания по организационно-экономической части дипломных проектов – М.: МИРЭА, 1990. – 30 с.
7. Выполнение организационно – экономической части дипломных проектов. – М.: МИРЭА, 1987. – 67 с.
8. ГОСТ12.0.003. – 74. Опасные и вредные производственные факторы.
9. Самгин Э.Б. Освещение рабочих мест. – М.: МИРЭА, 1989. – 27 с.
10. ГОСТ12.1.019 – 79. Электробезопасность. Общие требования.
11. Розанов В.С., Рязанов А.В. Обеспечение оптимальных параметров воздушной среды в рабочей зоне. – М.: МИРЭА, 1998. – 44 с.
12. ГОСТ12.1.005 – 88. Воздух рабочей зоны. Общие санитарно-гигиенические требования.
13. ГОСТ12.1.033 – 83. Шум. Общие требования безопасности.
14. ГОСТ12.1.004 – 85. Пожарная безопасность. Общие требования.
Речь.
В последние годы широкое распространение получили многолучевые конструкции пролетных клистронов реверсной магнитной фокусировкой. Такие приборы требуют для своей работы сравнительно низковольтные источники питания и обладают сравнительно малым весом и габаритами.
Можно показать, что использование реверсной магнитной системы позволяет в (n + 1)2 раз уменьшить вес системы по сравнению со случаем использования однородного магнитного поля (n – число реверсов). Однако, расчет фокусирующей системы мощного клистрона с реверсной магнитной фокусировкой представляет собой решение сложной задачи электронной оптики, так как в таких ЭОС необходимо обеспечить высокую ламинарность электронных траекторий и обеспечить оптимальную фазу влета пучка в каждый реверс.
В данной работе рассматривается использование современных компьютерных программ расчета для анализа и оптимизации клистрона КИУ-147, разработанного около 15 лет тому назад. Этот клистрон используется в ускорительной технике и имеет следующие параметры:
Импульсная мощность, мВт – 5; | Анодное напряжение – 52 кВ; |
Средняя мощность, кВт – 25; | Количество электронных лучей – 40; |
Частота, мГц – 2450; | Расположение электронных лучей: а) диаметр 84 – 21 луч, б) диаметр 64 – 19 лучей; |
Количество реверсов – 2; | Диаметр пролетного канала 6,5 – 8 мм; |
КПД, % - 44; | Суммарный первеанс » 20 ´ 10-6 А/В3/2; |
Коэффициент усиления, дБ – 50; | Диаметр катода – 8,6 мм. |
Основной целью дипломного проекта является расчет конфигурации электронных лучей в этом приборе от катода до конца пролетного канала и последующая оптимизация ЭОС на основе современных программ компьютерного расчета.
Внизу на плакате 1 представлены результаты расчета, методом анализа по программе «Алмаз», электронного луча от катода до конца пролетного канала для существующего варианта ЭОС. На этом рисунке показано распределение реверсного магнитного поля на оси одного из пролетных каналов и траектория электронов формируемого электронного потока. Расчетное значение первеанса одного луча составило Рm = 0,57 мкА/В3/2, что соответствует суммарному расчетному первеансу ЭОС (0,57 ´ 40 = 22,8 мкА/В3/2).
Из этого рисунка следует, что максимального значения радиус электронного потока достигает в выходной части прибора и составляет 2,7 мм. Поскольку радиус пролетной трубы клистрона равен 3,25 мм, то максимальное значение коэффициента заполнения канала пучком (b), по результатам расчета, равно 0,875. Такое значение коэффициента заполнения является недопустимо высоким. В связи с этим встает задача оптимизации данной ЭОС с целью уменьшения радиуса формируемого пучка. Как видно из этого рисунка имеются две причины увеличения радиуса пучка в выходной части прибора.
– неламинарность электронных траекторий в пушке.
– не оптимальность фазы влета пучка во второй реверс. При подходе ко второму реверсу электронный пучок является расширяющимся, а не сходящимся.
Для ликвидации указанных причин необходимо провести оптимизацию электронной пушки для устранения неламинарности и оптимизацию распределения магнитного поля, для изменения фазы влета пучка во второй реверс.
Расчет оптимизации электронной пушки, проводился на основе использования совокупности методов синтеза и анализа. На плакате 2 показаны результаты расчета пушки методом синтеза (по программе «Синтез»). При расчете пушки задавались следующие 3 параметра:
Рm = 0,57 мкА/В3/2; S = 3; b = 0,5.
Упрощение синтезной формы фокусирующих электродов проводилось методом анализа (по программе «Алмаз»), при этом теоретическую форму фокусирующих электродов, заменили реальной, как показано на рисунке. Окончательный оптимизированных вариант электронной пушки показан на плакате 3. Полученные основные параметры пушки следующие:
Анодное напряжение – 52 кВ;
Микропервеанс одного луча – 0,57 мкА/В3/2;
Ток одного луча – 6,7 А.
Пушка формирует ламинарный электронный поток. Существующую ранее неламинарность удалось ликвидировать.
Далее эта электронная пушка была поставлена в систему, и был выполнен новый расчет ЭОС от катода до конца пролетного канала. Результаты расчета показаны вверху на плакате 4 (рис.2.5). Сравнивая эти данные (рис.2.5) с результатами расчета на рис.2.2 можно сделать вывод о том, что применение новой электронной пушки улучшило ламинарность электронных траекторий. Теперь крайняя траектория не пересекает остальные траектории пучка. Однако радиус электронного потока в выходной части прибора уменьшился лишь на 7 %.
Оптимизация распределения магнитного поля в системе проводилось также на основе использования программы «Алмаз». Как следует из рис.2.5 для улучшения фазы влета пучка во второй реверс амплитуду магнитного поля во второй области необходимо либо увеличивать, либо уменьшать. При увеличении амплитуды поля во второй области длина волны пульсации уменьшается и можно достичь того, что во второй реверс пучок будет входить сходящимся. При уменьшении амплитуды поля во второй области длина волны пульсации увеличивается и опять можно достичь того, что во второй реверс пучок будет входить сходящимся. Оба эти метода были исследованы практически. Внизу на плакате 4 приводятся результаты расчета пучка для случая когда амплитуда магнитного поля везде увеличена на 10 % (рис.2.6).
Из рисунка следует, что увеличение магнитного поля на 10 % привело к заметному уменьшения радиуса пучка в выходной части прибора (приблизительно на 30 %). В этом случае электронный поток на входе во второй реверс не расходится, а практически параллелен оси пролетного канала. Казалось бы, что если еще увеличить магнитное поле, то в выходную область прибора электронный поток будет входить сходящимся, что приведет к дальнейшему улучшению параметров пучка в этой области. Однако, как показано в дипломе, такой путь не приемлем из-за опасности возникновения насыщения перемычек между соседними пролетными каналами в полюсных наконечниках прибора изготовленных из магнитомягкого материала. Расчет показывает, что если поле в зазоре увеличить до 1200 Гс, то индукция магнитного поля в перемычках полюсных наконечников составит 16200 Гс, что близко к индукции насыщения стали 03 ВД, составляющей примерно 20000 Гс.
Путь увеличения толщины полюсных наконечников с целью снижения индукции в перемычках увеличивает протяженность зоны реверса и требует существенного изменения конструкции прибора. В связи с этим в дипломе улучшение структуры формируемого пучка достигается за счет уменьшения амплитуды используемого магнитного поля. Вернемся к варианту ЭОС представленному на рис.2.5, но магнитное поле во втором реверсе уменьшим на 100 Гс. Результаты расчета такой ЭОС вверху на плакате 5 (рис.2.7). Сравнивая этот рисунок с рис.2.5 находим, что уменьшение амплитуды магнитного поля несколько улучшило фазу влета пучка в область второго реверса и уменьшило радиус пучка в третьей области.
Внизу на плакате 5 (рис.2.8) показаны результаты расчета для случая, когда поле во втором реверсе еще уменьшили на 100 Гс. Сравнивая рис.2.8 и рис.2.5 видим, что уменьшение индукции магнитного поля на 200 Гс существенно улучшило фазу влета пучка во второй реверс и конфигурацию пучка в третьей области.
Вверху на плакате 6 (рис.2.9) показаны результаты расчета пучка, когда индукции магнитного поля в третьей области увеличили на 100 Гс по сравнению с рис.2.8. Это изменение магнитного поля заметно уменьшило радиус пучка в третьей области.
Внизу на плакате 5 (рис.2.10) показаны результаты расчета пучка для случая, когда индукции магнитного поля везде уменьшили на 5 %, по сравнению с результатом расчета, показанным на рис.2.9.
Это и есть оптимизированный вариант ЭОС. Сравнивая рис.2.10 с исходными вариантом ЭОС показанным на рис.2.5, следует сделать вывод о том, что в результате проведенного исследования удалось уменьшить в 1,4 раза радиус формируемого пучка в третьей области и ликвидировать неламинарность электронных траекторий в потоке. Амплитуда магнитного поля в оптимизированной ЭОС составляет в первой области – 760 Гс, во второй области – 746 Гс и в третьей области – 1007 Гс.
Применение новой оптимизированной ЭОС должно существенно улучшить параметры прибора КИУ – 147.
Плакат 1.
Устройство исходного варианта электронно-оптической системы и результаты расчета конфигурации электронного луча в нем.
Импульсная мощность, мВт – 5; | Анодное напряжение – 52 кВ; |
Средняя мощность, кВт – 25; | Количество электронных лучей – 40; |
Частота, мГц – 2450; | Расположение электронных лучей: а) диаметр 84 – 21 луч, б) диаметр 64 – 19 лучей; |
Количество реверсов – 2; | Диаметр пролетного канала 6,5 – 8 мм; |
КПД, % - 44; | Суммарный первеанс » 20 ´ 10-6 А/В3/2; |
Коэффициент усиления, дБ – 50; | Диаметр катода – 8,6 мм. |
Плакат 2.
Оптимизация электронной пушки.
Рm = 0,57 мкА/В3/2
S = 3
b = 0,5
Плакат 3.
Оптимизация электронной пушки.
Анодное напряжение – 52 кВ;
Микропервеанс одного луча – 0,57 мкА/В3/2;
Ток одного луча – 6,7 А.
Плакат 4.
Конфигурация электронного луча при различной амплитуде магнитного поля.
Плакат 5.
Конфигурация электронного луча при различной амплитуде магнитного поля в различных реверсах.
Плакат 6.
Оптимизированная электоронно-оптическая система прибора.
0 комментариев