Рассчитаем вероятность поступления не менее к вызовов за интервал времени [0,t)

19677
знаков
12
таблиц
0
изображений

1.   Рассчитаем вероятность поступления не менее к вызовов за интервал времени [0,t).

,

где: к = 0, 1, …;

t* = t /`t ; где `t – средняя длительность обслуживания вызова.

Определим данные для расчетов:

К = 11/2 = 6; А = 4; V = 11;

Производим расчеты для t*  = 0,5 с.

 

P2(0,5) = 0,13 P3(0,5) = 0,18 P4(0,5) = 0,09

P5(0,5) = 0,03 P6(0,5) = 0,012

Производим расчеты для t*  = 1,0 с.

 

 

P2(1) = 0,14 P3(1) = 0,19 P4(1) = 0,19

P5(1) = 0,15 P6(1) = 0,1

Производим расчеты для t*  = 1,5 с.

 

 

P2(1,5) = 0,044 P3(1,5) = 0,089 P4(1,5) = 0,13

P5(1,5) = 0,16 P6(1,5) = 0,16

Производим расчеты для t*  = 2 с.

 

 

P2(2) = 0,01 P3(2) = 0,028 P4(2) = 0,057

P5(2) = 0,91 P6(2) = 0,122

2.   Рассчитаем функцию распределения промежутков времени между двумя последовательными моментами поступления вызовов:

где Zk – промежуток времени между ( к-1 )-м и к-м вызовами.

 

F(0) = 1 – e-4*0 = 0 F(0,1) = 1 – e-4*0,1 = 0,32 F(0,2) = 1 – e-4*0,2 = 0,55

F(0,3) = 0,69 F(0,4) = 0,79 F(0,5) = 0,86

F(0,6) = 0,9 F(0,7) = 0,93

Результаты вычислений занесем в таблицу 4:

Таблица 4

F( t* )

0 0,32 0,55 0,69 0,79 0,86 0,9 0,93

t*

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

3.   Рассчитаем вероятность поступления не менее к вызовов за промежуток времени [0, t*):

, при t*=1.

P6³6(1) = 1 – 0,84 = 0,16 P10³6(1) = 1 – 0,005 = 0,995

P7³6(1) = 1 – 0,05 = 0,95 P11³6(1) = 1 – 0,001 = 0,999

P8³6(1) = 1 – 0,02 = 0,98 P12³6(1) = 1 – 0,0006 = 0,9994

P9³6(1) = 1 – 0,013 = 0,987 P13³6(1) = 1 – 0,0001 = 0,9999

Интенсивность простейшего потока вызовов m численно равна параметру l, а при t = `t =1: m = l = А = 4.

Задание 3.

1.   Рассчитать интенсивность поступающей нагрузки на входы I ГИ для АТСКУ – А вх. I ГИ.

2.   Рассчитать средние интенсивности удельных абонентских нагрузок для абонентских лини народно-хозяйственного и квартирного секторов : АНХ и АКВ , а так же среднюю удельную интенсивность нагрузки на абонентскую линию АТС - АИСХ .

3.   Пересчитать интенсивность нагрузки на выход ступени I ГИ.

Исходные данные, таблица 5:

Таблица 5

Емкость

N

NНХ

Nкв

СНХ

ТНХ

СКВ

ТКВ

NI ГИ

9000 5000 4000 3,8 100 1,5 130 1000

Решение:

1. Основными параметрами интенсивности нагрузки являются:

Ni – число источников нагрузки i-й категории.

Ci – среднее число вызовов, поступающих от одного источника i-й категории в ЧНН (час наибольшей нагрузки).

ti – средняя длительность одного занятия для вызова от источника i-й категории.

Различают следующие категории источников нагрузки: абонентские линии народнохозяйственного сектора (НХ), абонентские линии квартирного сектора индивидуального пользования (кв.и.), абонентские линии квартирного сектора коллективного сектора (кв.к.), таксофоны (т). Для расчета используем две категории: абонентские линии народнохозяйственного сектора (НХ) и абонентские линии квартирного сектора (кв).

Интенсивность поступающей нагрузки:

,

Средняя длительность одного занятия зависит от типа системы коммутации и определяется выражением:

где: Рр – доля вызовов из общего числа, для которых соединения закончились разговором; Рз – доля вызовов из общего числа, для которых соединения не закончились разговором из-за занятости линии вызываемого абонента; Рно –то же из за неответа вызываемого абонента; Рош – то же из-за ошибок в наборе номера; Ртехн - то же из-за технических неисправностей в узлах коммутации (при расчетах Ртехн =0); tрi , tз , tно­­­­­ , tош , tтехн – средние длительности занятий соответствующие этим случаям. Их можно определить из следующих выражений:

tPi = ty+ tпв+ Ti+ t0

tз = ty+ tсз+ t0

tно = ty+ tпвн+ t0

tош = 18 с.

где: tу – средняя длительность установления соединения; tпв и tпвн  средняя длительность слушания сигнала «КПВ» (tпв=7 с. в случае разговора между абонентами; tпвн=30 с. в случае неответа вызываемого абонента);

Ti – продолжительность разговора для вызова i-й категории;

tо – продолжительность отбоя;

tсз – продолжительность слушания сигнала “Занято”

tу = 0,5* tМАВИ + tМРИ + tМРИ + tСО + n * tН + tIГИ + tМIГИ + tМСD + tМСD

где tj – время ожидания обслуживания маркером j-й ступени; tj = 0,1 с.

tМАВИ – время установления соединения маркером АВ на ступени АИ при исходящей связи; tМАВИ = 0,3 с.

tМРИ - время установления соединения маркером ступени РИ; tМРИ = 0,2 с.

tМIГИ - время установления соединения маркером ступени IГИ; tМIГИ = 0,65 с.

tМСD - время установления соединения маркером CD; tМСD = 1 С.

tСО – средняя длительность слушания сигнала «Ответ станции»; tСО = 3 с.

tН – средняя длительность набора одного знака номера; tН = 1,5 с.

n – значность номера.

Значения tо и tсз для АТСКУ следующие: tсз = 0,6 с., tо = 0.

РР = 0,6; Рз = 0,2; Рно = 0,15; Рош = 0,05;

tу = 0,5 * 0,3 + 0,1 + 0,2 + 3 + 5 * 1,5 + 0,1 + 0,65 + 0,1 + 1 = 12,8 с.

tрнх= 12.8 + 7 + 100 + 0.6 = 120,4 с.

tркв = 12,8 + 7 + 130 + 0,6 = 150,4 с.

РР* tрнх = 0,6 * 120,4 = 72,24

РР* tркв = 0,6 * 150,4 = 90,24

tз = tу+ tсз+ tо = 12,8+0+0,6 = 13,4 с.

Рз* tз = 0,2*13,4 = 2,68

tно = tу+ tпвн+ tо = 12,8+30+0,6 = 43,4 с.

Рно* tно =0,15*43,4 = 6,51

Рош* tош = 0,05*18 = 0,9

tнх = 72,24+2,68+6,51+0,9+0 = 82,33 с.

tкв = 90,24+2,68+6,51+0,9+0 = 100,33 с.

АВХIГИНХ =  = 434,5 Эрл

АВХIГИКВ =  = 167,2 Эрл

АВХIГИ = 434,5 + 167,2 = 601,7 Эрл

2. Рассчитаем средние интенсивности удельных абонентских нагрузок для абонентских линий народнохозяйственного и квартирного секторов:

, Эрл

, Эрл

Средняя удельная интенсивность нагрузки на абонентскую линию АТС:

, Эрл

АНХ =  = 0,087 Эрл АКВ =  = 0,042 Эрл

АИСХ =  = 0,07 Эрл

3. Пересчитаем нагрузку со входа ступени I ГИ на ее выход:

 ,

где tвхIГИ и tвыхIГИ – соответственно среднее время занятия входа ступени I ГИ и среднее время занятия выхода ступени I ГИ:

tвыхIГИ = tвхIГИ - Dt,

где Dt – разница между временами занятия на входе и выходе ступени I ГИ. Для АТСКУ:

Dt = 0,5* tМАВИ + tМРИ + tМРИ + tСО + n * tН + tМIГИ + tМIГИ

tВХIГИ = АВХIГИ / Nнх * Снх + Nкв * Скв

Dt = 0,5 * 0,3 + 0,1 + 0,2 + 3 + 5 * 1,5 + 0,1 + 0,65 = 11,7 с.

tВХIГИ =  = 86,6 с.

tВЫХIГИ = tВХIГИ - Dt = 86,6 – 11,7 = 74,9 с.

АВЫХIГИ = 74,9/86,6 * 601,7 = 520,4 Эрл

Задание 4.

 

Рассчитать и построить зависимость числа линий V и коэффициента использования h (пропускная способность) от величины интенсивности нагрузки при величине потерь Р = 0,0NВ, где NВ – номер варианта.

Результаты расчета представить в виде таблицы при Р = const (постоянная).

N А, Эрл V Р (табл) Y h

1

2

3

4

.

.

.

10

1

3

5

10

.

.

.

50

Решение:

Вероятность занятия любых i линий в полнодоступном пучке из V при обслуживании простейшего потока вызовов определяется распределением Эрланга:

Различают следующие виды потерь: потери от времени Pt , потери по вызовам Pв , потери по нагрузке Pн . Потери по времени Pt - доля времени, в течение которого заняты все V линии пучка. Потери по вызовам определяются отношением числа потерянных вызовов Спот к числу поступивших Спост:

Pв = Спот / Спост

Потери по нагпрузке определяются отношением интенсивности потерянной нагрузки Yпот к интенсивности поступившей А :

Pн = Yпот / А

При обслуживании простейшего потока вызовов перечисленные выше три вида потерь совпадают Pt = Pв = Pн и равны вероятности занятия V линий в пучке:

РV = Pt = Pв = Pн = EV,V(A) =

Обслуженной нагрузкой называют нагрузку на выходе коммутационной схемы, ее интенсивность определяют из выражения:

Y = F - YПОТ = A * (1 - EV(A))

Среднее использование одной линии в пучке равно:

h = Y / V

При Р = 0,011 (11 вариант), по известным А, используя таблицы вероятности потерь определим соответствующие V и рассчитаем для каждого значения А интенсивность Y и среднее использование h.

А = 1, Эрл V1=5 Y1=1(1-0,011) = 0,989 h = 0,197

А = 3, Эрл V3=8 Y3=3(1-0,011) = 2,96 h = 0,986

А = 5, Эрл V5=11 Y5=5(1-0,011) = 4,94 h = 0,449

А = 10, Эрл V10=18 Y10=10(1-0,011) = 9,89 h = 0,549

А = 15, Эрл V15=24 Y15=15(1-0,011) = 14,83 h = 0,617

А = 20, Эрл V20=30 Y20=20(1-0,011) = 19,78 h = 0,659

А = 25, Эрл V25=36 Y25=25(1-0,011) = 24,73 h = 0,686

А = 30, Эрл V30=42 Y30=30(1-0,011) = 29,67 h = 0,706

А = 40, Эрл V40=53 Y40=40(1-0,011) = 39,56 h = 0,746

А = 50, Эрл V50=64 Y50=50(1-0,011) = 49,45 h = 0,772

Результаты расчетов занесем в таблицу 6:

Таблица 6

N А, Эрл V Р (табл) Y h

1

2

3

4

5

6

7

8

9

10

1

3

5

10

15

20

25

30

40

50

5

8

11

18

24

30

36

42

53

64

0,011

0,011

0,011

0,011

0,011

0,011

0,011

0,011

0,011

0,011

0,989

2,96

4,94

9,89

14,83

19,78

24,73

29,67

39,56

49,45

0,197

0,986

0,449

0,549

0,617

0,659

0,686

0,706

0,746

0,772

Построим график зависимости числа линий V и коэффициента использования h от величины интенсивности нагрузки Y при величине Р=0,011.

 

Задание 5.

 

1. Построить оптимальную равномерную неполнодоступную (НПД) схему, имеющую следующие параметры: V – емкость пучка, g – число нагрузочных групп, d – доступность. Привести матрицу связности.

Исходные данные:

V = 25*Nгр­ + NВ

D = 10*Nгр

где Nгр – номер группы , NВ – номер варианта.

8, если N8=1-10;

g = 10, если N8=11-21

12, если N8=21-…

2. Рассчитать и построить зависимость числа линий V от величины потерь Р неполнодоступного пучка при значении A и D=10 по формуле Эрланга, О Делла, Пальма-Якобеуса. Результаты привести в виде таблицы и графика:

Р V

Формула

Эрланга

О Делла Пальма-Якобеуса

МПЯ*

1

2

3

*- Модифицированная формула Пальма-Якобеуса.

Исходные данные: А – поступающая нагрузка взять в задании 1.

Решение:

Неполнодоступное включение это когда входу доступны не все, а часть выходов (d-определяет количество доступных выходов, d<V). Главная особенность НПД схем в том, что при одних и тех же параметрах можно построить множество различных схем, отличающихся пропускной способностью. Основными параметрами схемы являются: g – число нагрузочных групп, d – доступность, V – количество подключаемых к выходам соединительных устройств. Нагрузочной группой называется совокупность источников вызовов, обслуживаемых одними и теми же d-соединительными устройствами в НПД схеме. НПД схемы бывают трех видов ступенчатая, равномерная и идеально-симметричная. По типу соединений: прямое, перехваченное и со сдвигом. При прямом включении объединяются одноименные выходы соседних нагрузочных групп. При перехваченном включении выходы каждой нагрузочной группы соединяются по возможности равномерно с одноименными выходами остальных нагрузочных групп. При включении со сдвигом выходы одной нагрузочной группы соединяются с разноименными выходами других нагрузочных групп.

При выполнении сдвига с перехватом чаще всего применяют однородное включение соединительных устройств, так называемые циклические схемы.

Цилиндр – это циклосхема, у которой обязательно равенство V=g (число выходов совпадает с числом нагрузочных групп). Размер цилиндра d представляет собой число охватываемых выходов каждой нагрузочной группы. Цилиндр размера d называется d-шаговым. Кроме размера цилиндр характеризуется наклоном.

Для построения оптимальной схемы нужно построить матрицу связности. Матрица связности – квадратная (g,g), симметричная относительно главной диагонали (по диагонали стоит d доступность), элементы матрицы связности показывают число связей между нагрузочными группами. Для оптимальности схемы необходимо чтобы матрицы связности были однородными и не отличались не более чем на единицу.

1.

V = 25*1+11 = 36

D = 10*1 = 10

G = 10

1) Определим размер цилиндров:

r = [(g*d)/V] (целая часть)

r = [(10*10)/36] = 2

2) Наша схема будет состоять из r и r+1 шаговых цилиндров

r+1 = 2 + 1 = 3

3) Определяем общее количество цилиндров:

k » V / g k » 36 / 10 » 4

4) Определим количество двух шаговых цилиндров:

5) Определим количество трех шаговых цилиндров:

kr+1 = k – k­r

kr+1 = 4 – 1 = 3

6) Определим наклон цилиндров. Для этого строим матрицу связности (табл. 7):

Таблица 7

Параметр схемы Элеме нты первой строки матриц для нагр узочной группы
1 2 3 4 5 6 7 8 9 10

2

1,3

1,4

1,2

2

3

3

3

0

1

1

1

1

0

0

1

0

1

0

1

0

1

1

0

0

0

2

0

0

1

1

0

0

1

0

1

1

0

0

1

0

1

1

1

11 3 2 2 2 2 2 2 2 3

 

7) Построим схемы цилиндров:

1 2 3 4 5 6 7 8  9 10

I

II

11 12 13 14 15 16 17 18 19 20

III

IV

V

21 22 23 24 25 26 27 28 29 30

VI

VII

VIII

31 32 33 34 35 36

XIX

X

XI

2. Для практических расчетов пропускной способности однозвенных НПД коммутационных схем используют приближенные методы.

Упрощенная формула Эрланга:

где У0 – интенсивность обслуженной нагрузки пучком линий;

Р – вероятность потерь;


D – доступность;

средняя пропускная способность одной линии пучка.

Формула О¢ Делла:

где УD – нагрузка, обслуженная полнодоступным пучком из d линий при потерях и приблизительно определяемая с помощью 1-й формулы Эрланга.

Формула Пальма-Якобеуса:

где А – интенсивность поступающей нагрузки на пучок линий.

В модифицированной формуле Пальма-Якобеуса вместо поступающей нагрузки А в формулу Пальма-Якобеуса подставляется значение фиктивной нагрузки Аф определяемой из выражения:

Аф = Y / (1 - EVф))

P = EVф) / (EV-dф))

где Y = А(1-Р)

Рассчитаем по формуле Эрланга:

Р = 0,001

УО = А(1-Р) = 4(1-0,001) = 3,996

V=3,996 / = 7,99 » 8

Р = 0,002

УО = 3,992 V = 7,43 » 8

Р = 0,003

УО = 3,988 V = 7,12 » 8

Рассчитаем по формуле О¢ Делла:

Р = 0,001

УО = 3,996 У10= 3,089

V = 10 + = 15,79 » 16

Р = 0,002

УО = 3,992 У10= 3,420 V = 14,78 » 15

Р = 0,003

УО = 3,988 У10= 3,637 V = 14,1 » 15

Р V

Формула

Эрланга

О Делла Пальма-Якобеуса

МПЯ*

1

2

3

0,001

0,002

0,003

8

8

8

16

15

15


СПИСОК ЛИТЕРАТУРЫ:

1.   Корнышев Ю.Н., Фань Г.Л. «Теория распределения информации». М., Радио и связь, 1985 г.

2.   Башарин Г.Л. Таблицы вероятностей и средних квадратичных отклонений потерь на полнодоступном пучке линий. М., 1962 г.

3.   Ионин Г.Л., Седол Я.Я. Таблицы вероятностных характеристик полнодоступного пучка при повторных вызовах. М., Наука, 1970 г.

4.   Айтуова Р.Ч., Туманбаева К.Х. Методические указания к выполнению курсовой работы. Алматы, АИЭС, 1998 г.


Информация о работе «Теория распределения информации»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 19677
Количество таблиц: 12
Количество изображений: 0

Похожие работы

Скачать
18712
7
12

ость занятия которых подчиняется распределению Эрланга, соответственно равны: в) Распределение Пуассона используется при N, v → ∞ и имеет вид: где Y – средняя интенсивность нагрузки Y=a*v=0,45*9=4,05 Рисунок 3 Распределение Пуассона Математическое ожидание и дисперсия числа занятых линий, в бесконечном пучке линий равны между собой и вычисляются по формуле: Потоки ...

Скачать
38460
16
1

... работы необходимо начинать с приобретения методических руководств к курсовой работе Ниеталина Ж.Н. и Ниеталиной Ж.Ж. «Электрлiк байланыс теориясы» выпущенной в Алма-Ате в 1999 году, Ниеталина Ж.Н. и Ниеталиной Ж.Ж. «Теория электрической связи» учебное пособие к курсовой работе. Алма-Ата 2001г., а также учебное пособие Зюко А.Г. и др. «Теория передачи сигналов» – М.; «Связь» 1988г., «Теория ...

Скачать
112291
0
0

... такие стремления можно только с помощью государства. Неоклассическое направление интересует нас в том отношении, что сделанные в его русле теоретические выводы послужили полем для развития многих современных течений экономической мысли — монетаризма, неолиберализма и ряда теорий экономического роста. Название этого направления указывает на преемственность многих идей, выдвигавшихся классиками ...

Скачать
129376
0
0

... теории на новый мировоззренческий принцип - цивилизационный - сопровождался рядом важных процессов, которые в совокупности определили превращение научно-технологического прогресса в объект исследования экономической теории как науки. Все это обусловило важнейшее направление формирования новой методологии этой науки. Формационный подход опирался на производственные отношения, классы общества, ...

0 комментариев


Наверх