1.1.2 Полупроводники с электронной электропроводностью
При введении в 4-валентный полупроводник примесных 5-валентных атомов (фосфора Р, сурьмы Sb) атомы примесей замещают основные атомы в узлах кристаллической решетки (рис. 1.4, а). Четыре электрона атома примеси вступают в связь с четырьмя валентными электронами соседних атомов основного полупроводника. Пятый валентный электрон слабо связан со своим атомом и при сообщении ему незначительной энергии, называемой энергией активации, отрывается от атома и становится свободным. Примеси, увеличивающие число свободных электронов, называют донорными или просто донорами. Доноры подбирают таким образом, чтобы их энергетические уровни Wд располагались в запрещенной зоне вблизи дна зоны проводимости основного полупроводника (рис. 1.4, б). Поскольку концентрация доноров в большинстве случаев не превышает 1015...1017 атомов в 1 см3, что составляет
10-4 % атомов основного вещества, то взаимодействие между атомами доноров отсутствует и их энергетические уровни не разбиваются на зоны.
Малая энергия активизации примесей, равная 0,04-0,05 эВ для кремния и 0,01-0,13 эВ для германия, уже при комнатной температуре приводит к полной ионизации 5-валентных атомов примесей и появлению в зоне проводимости свободных электронов. Поскольку в этом случае появление свободных электронов в зоне проводимости не сопровождается одновременным
Рисунок 1.4 Условное обозначение кристаллической решетки (а) и энергетическая диаграмма (б) полупроводника с электронной электропроводностью.
увеличением дырок в валентной зоне, в таком полупроводнике концентрация электронов оказывается значительно больше концентрации дырок. Дырки в полупроводниках образуются только в результате разрыва ковалентных связей между атомами основного вещества.
Полупроводники, в которых концентрация свободных электронов в зоне проводимости превышает концентрацию дырок в валентной зоне, называются полупроводниками, с электронной электропроводностью или полупроводниками n-типа.
Подвижные носители заряда, преобладающие в полупроводнике, называют основными. Соответственно те носители заряда, которые находятся в меньшем количестве, называются неосновными для данного типа полупроводника. В полупроводнике n-типа основными носителями заряда являются электроны, а неосновными - дырки. В состоянии теплового равновесия в таком полупроводнике концентрации свободных электронов () и дырок () определяются соотношениями:
; . (1.3)
С учетом соотношений (1.1) выражения (1.3) можно представить в следующем виде:
; (1.4) . (1.5)
Из этих соотношений следует, что для полупроводника n-типа выполняется неравенство >> .
Атомы 5-валентных примесей, "потерявшие" по одному электрону, превращаются в положительные ионы. В отличие от дырок положительные ионы прочно связаны с кристаллической решеткой основного полупроводника, являются неподвижными положительными зарядами и, следовательно, не могут принимать непосредственное участие в создании электрического тока в полупроводнике.
Если считать, что при комнатной температуре все атомы донорных примесей ионизированы (= Nд, » 0), на основании выражения (1.4) можно записать:
, (1.6)
где Nд - концентрация донорных атомов в полупроводнике.
Из соотношения (1.6) видно, что в полупроводниках n-типа уровень Ферми располагается в верхней половине запрещенной зоны, и тем ближе к зоне проводимости, чем больше концентрация доноров. При увеличении температуры уровень Ферми смещается к середине запрещенной зоны за счет ионизации основных атомов полупроводника.
Повышение концентрации электронов в данном полупроводнике значительно снижает его удельное сопротивление. Например, чистый кремний имеет r = 2×103 Ом× м, а легированный фосфором - (0,25...0,4)×102 Ом×м.
1.1.3 Полупроводники с дырочной электропроводностью
Если в кристалле 4-валентного элемента часть атомов замещена атомами 3-валентного элемента (галлия Ga, индия In), то для образования четырех ковалентных связей у примесного атома не хватает одного электрона (рис.
1.5, а). Этот электрон может быть получен от атома основного элемента полупроводника за счет разрыва ковалентной связи. Разрыв связи приводит к появлению дырки, так как сопровождается образованием свободного уровня в валентной зоне. Примеси, захватывающие электроны из валентной зоны, называют акцепторными или акцепторами. Энергия активизации акцепторов составляет для германия 0,0102-0,0112 эВ и для кремния 0,045-0,072 эВ, что значительно меньше ширины запрещенной зоны беспримесного полупроводника. Следовательно, энергетические уровни примесных атомов располагаются вблизи валентной зоны (рис. 1.5, б).
Ввиду малого значения энергии активизации акцепторов уже при комнатной температуре электроны из валентной зоны переходят на уровни акцепторов. Эти электроны, превращая примесные атомы в отрицательные ионы, теряют способность перемещаться по кристаллической решетке, а образовавшиеся при этом дырки могут участвовать в создании электрического тока.
За счет ионизации атомов исходного материала из валентной зоны часть электронов попадает в зону проводимости. Однако электронов в зоне проводимости значительно меньше, чем дырок в валентной зоне. Поэтому дырки в таких полупроводниках являются основными, а электроны - неосновными
Рисунок 1.5 Условное изображение кристаллической решетки (а) и энергетическая диаграмма (б) полупроводника с дырочной электропроводностью.
подвижными носителями заряда. Такие полупроводники носят название полупроводников с дырочной электропроводностью или полупроводников р-типа. В состоянии теплового равновесия концентрация дырок в полупроводнике р-типа () и свободных электронов () определяется из соотношений:
; (1.7) (1.8)
Из уравнений (1.7) и (1.8) следует, что для полупроводника р-типа выполняется неравенство >> .
Если считать, что при комнатной температуре все акцепторные атомы ионизированы, т. е. =0, то на основании соотношения можно записать: , (1.9)
где Na — концентрация акцепторных атомов в полупроводнике.
Соотношение (1.9) показывает, что уровень Ферми в полупроводнике р-типа располагается в нижней половине запрещенной зоны, так как Na >> ni, и при повышении температуры смещается к середине запрещенной зоны за счет ионизации атомов основного полупроводника.
Кроме того, на основании уравнений (1.4), (1.5), (1.7) и (1.8) можно записать следующее выражение:
(1.10)
которое показывает, что введение в полупроводник примесей приводит к увеличению концентрации одних носителей заряда и пропорциональному уменьшению концентрации других носителей заряда за счет роста вероятности их рекомбинации.
... условиям эксплуатации и конструктивным показателям, могут образовывать семейства серий интегральных схем. 2. ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ Логические и запоминающие элементы составляют основу устройств цифровой обработки информации – вычислительных машин, цифровых измерительных приборов и устройств автоматики. Логические элементы выполняют простейшие логические ...
... соединение “точка-точка” со скоростью до 3 Гб/с. 6. Как работают программы восстановления данных Каждый только что удаленный файл все еще находится на жестком диске, но Windows его больше не видит. Если программе восстановления данных необходимо восстановить этот файл, она просматривает загрузочный сектор раздела (Partition Boot Sector). В нем содержится вся информация о строении раздела, ...
... электротехнических и электронных устройств, в которых используется явление резонанса напряжения. Литература 1. Иванов И.И., Равдоник В.С. Электротехника. - М.: Высшая школа, 1984, с.53 - 58. 2. Касаткин А.С., Немцов М.В. Электротехника. - М.: Энергоатомиздат, 1983, с.73 - 77. Лабораторная работа №5 КОМПЕНСАЦИЯ РЕАКТИВНОЙ МОЩНОСТИ Цель работы. Ознакомление с методом повышения ...
... корпускулярные свойства его света, а волновые себя практически не проявляли. Впрочем, это и следует из таблицы.Полупроводниковые устройства. Для начала рассмотрим принцип действия полупроводниковых приборов. Поскольку для компьютера наиболее важными является транзисторы, именно ими мы рассмотрение полупроводниковых устройств и ограничим. Полупроводниками называют группу элементов и их соединений, ...
0 комментариев