3. ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ЭЛЕКТРОКЕРАМИЧЕСКИХ МАТЕРИАЛОВ И ИЗДЕЛИЙ

В общем случае технологический процесс производства электрокерамических изделий можно представить схемой рис. 1 (см. приложения). Для каж­дого конкретного случая процесс будет не­сколько видоизменяться, однако можно отме­тить общие для большинства случаев основные этапы производства: приготовление формовоч­ной массы; оформление заготовок изделий; сушка, глазурование и обжиг изделий. В неко­торых случаях обожженные изделия могут подвергаться дополнительной механической об­работке./5/

Приготовление формовочной массы. Керамическая формовочная масса характеризуется размерами и распределением частиц; от этого зависят плотность упаковки, влагосодержание и прочность заготовки до обжига, технологиче­ские свойства материала, а также характери­стики обожженных керамических изделий.

Измельчение компонентов является одним из основных процессов при приготовлении фор­мовочных масс. Как правило, твердые мине­ральные компоненты массы сначала подверга­ют грубому измельчению в щековых дробилках и на бегунах, затем просеивают на виброситах для получения заданной фракции, далее про­изводят мокрый или сухой тонкий помол на ро­тационных шаровых мельницах периодического или непрерывного действия. Сверхтонкий по­мол производят в струйных мельницах с ис­пользованием сжатого воздуха.

Степень измельчения отдельных компонен­тов массы зависит от требований, предъявляе­мых к материалу, размеров изделий и приме­няемых способов оформления, сушки и обжига. При измельчении обычно происходит смешение компонентов массы. Степень измельчения про­веряют ситовым и микроскопическим анализа­ми, а в лабораторных условиях — седиментационным. Для удаления частиц железа измель­ченную массу пропускают через магнитный се­паратор.

Обезвоживание водного шликера после мокрого помола производится на фильтр-прес­се под давлением 0,8—3 МПа. Масса, остаю­щаяся между пластинами фильтра в виде кор­жей, в зависимости от назначения проходит различную обработку. При изготовлении масс для пластичной формовки коржи поступают для переминки в вакуум-прессы, с помощью ко­торых обеспечивается хорошее извлечение воздуха, окончательная переминка массы и выдавливание ее через мундштук, придающий заго­товкам определенный профиль. Заготовки ис­пользуются для формовки изделий пластичными методами.

Для приготовления водного литейного шли­кера коржи распускаются в шликерных мешалках в воде с добавкой электролита и доводят­ся до нужной влажности. После вакуумирования шликер подается на литье. Безглинистые массы или массы с небольшим содержанием глинистых веществ (например, конденсаторные массы с содержанием около 3 % бентонита) не подвергают обезвоживанию на фильтр-прессе, а используют как литейный шликер после вакуумировки.

При приготовлении масс, предназначенных для изготовления изделий методом прессова­ния, коржи с добавкой отходов формовочной массы подвергают сушке и дроблению. Затем масса просеивается, пропускается через маг­нитный сепаратор, вводятся связующие вещества, производится тщательное перемешивание и приготовляются гранулированные (гранулы размером 0,5—2 мм отделяют от пыли на соот­ветствующих ситах) пресс-порошки.

В качестве связующего и пластифицирую­щего вещества в глинистых массах служит во­да, а в безглинистых массах — растворы орга­нических веществ, например раствор поливини­лового спирта, бакелитовой смолы, воскообразные вещества — парафин, церезин и др.

Для приготовления гра­нулированного пресс-порошка широко приме­няют распылительные сушилки. При этом вод­ный шликер с влажностью 35—50 % распыля­ют форсункой или вращающимся диском в ба­шенной сушилке для подсушки и получения гранул заданной влажности. Шарообразные гранулы (размерами преимущественно 0,3— 0,5 мм) имеют более высокую текучесть, чем порошок, получаемый измельчением сухой мас­сы в мельницах ударного действия.

При применении распылительных сушилок достигается существенная экономия за счет ис­ключения из производственного цикла ряда операций, снижения трудовых и эксплуатаци­онных затрат.

При приготовлении шликера для горячего литья в металлические формы под давлением масса предварительно синтезируется, дробится, измельчается в барабанных или вибрационных мельницах до заданной дисперсности (обычно удельная поверхность 350—800 м2/кг). Затем вводится парафин с добавкой олеиновой кис­лоты в обогреваемую до 70—80 °С лопастную, пропеллерную или иную мешалку.

Ориентировочное количество связующего, состоящего из 95—97 % парафина и 3—5 % олеиновой кислоты, в шликерах составляет око­ло 10 —15%.

Перед заливкой в формы горячий шликер вакуумируют в аппаратах различной конст­рукции./3/

Оформление заготовок изделий. В зависи­мости от состава, технологических особенностей приготовления массы, конфигурации, габаритных размеров и масштаба производства изде­лий в основном применяются следующие спо­собы изготовления заготовок: пластичное фор­мование, прессование из пресс-порошков, литье водного шликера в гипсовые формы, горячее литье под давлением в металлические формы и высокотемпературное прессование./2/

Пластичное формование относится к важ­нейшим методам оформления электротехниче­ских изделий. Этот метод в основном применя­ется при массовом производстве различных фарфоровых изоляторов, иногда для изготов­ления специальных изделий, стеатитовых, кордиеритовых, конденсаторных, глиноземистых и др., в том числе и из масс, не содержащих глины, но пластифицированных органическими связующими.

При изготовлении изделий пластичным формованием керамическую массу подвергают тщательной обработке, многократной перемеш­ке в ленточном прессе, вакуумированию.

Сплошные толстостенные трубчатые кера­мические изделия оформляются из пластичной массы с помощью мощных вакуум-прессов. Окончательная конфигурация заготовок дости­гается пластичным формованием во вращаю­щихся гипсовых или металлических формах и механической обработкой резанием. Этот ме­тод применяется при изготовлении крупногаба­ритных высоковольтных изоляторов и подоб­ных им изделий. Трубки, оси, стержни с одним или несколькими каналами и другие изделия с постоянным поперечным сечением изготавлива­ют из пластичной массы способом протяжки через фильерные мундштуки на поршневых винтовых, гидравлических или шнековых прес­сах. Этот способ является основным для оформ­ления заготовок различной конфигурации при изготовлении конденсаторов, резисторов и дру­гих изделий.

Изделия, не имеющие форму тел вращения, при небольших выпусках изготовляются мето­дом ручной лепки в гипсовых формах.

Прессование из пресс-порошков является одним из распространенных и производитель­ных способов изготовления полностью оформленных изделий заданной конфигурации или заготовок для последующей механической об­работки изделий.

В зависимости от конфигурации прессуе­мых изделий, степени пластичности пресс-по­рошка и требований к изделиям прессование можно осуществлять различными способами. Так, широкий ассортимент установочных дета­лей из стеатита и форстерита, высоковольтные конденсаторы и другие изделия изготовляются сухим прессованием с применением малоплас­тичных пресс-порошков с неводными органиче­скими (парафин, смесь парафина с керосином и др.) или гидроорганическими (водный рас­твор поливинилового спирта) связующими. Для малопластичных пресс-порошков в СССР ис­пользуют 2—5 %-ный водный раствор поливи­нилового спирта или 6—14 %-ный раствор па­рафина в бензине или керосине.

Штампование применяется главным обра­зом для установочных деталей различной кон­фигурации из высокопластичных материалов с большим содержанием глин (фарфора, радио­фарфора, ультрафарфора и т. д.) и добавкой гидроорганических пластификаторов.

Изостатическое прессование основано на всестороннем обжатии засыпанного в эластич­ную форму пресс-порошка или предварительно оформленной каким-либо способом заготовки жидкостью или сжатым газом. Изостатическое прессование в резиновой форме путем прило­жения гидростатического давления жидкости обычно называют гидростатическим прессова­нием. Этот способ применяется для оформле­ния заготовок некоторых видов изоляторов, пьезокерамических элементов и других подоб­ных изделий. Он обеспечивает получение плот­ных и однородных заготовок.

Высокотемпературное прессование приме­няется преимущественно для получения неко­торых специальных изделий простой формы. Оно заключается в спекании керамического ма­териала под давлением при высокой темпера­туре в нагревостойких формах, при этом оформ­ление и обжиг изделий совмещаются в единой операции. Исходный материал применяется в виде порошков или гранул. Давление, темпе­ратура и продолжительность прессования оп­ределяются составом материала, размером и конфигурацией изделий и т. п.

Литье водных шликеров в пористые формы является одним из самых старых способов оформления керамических изделий. Этот способ широко применяется и сейчас, главным обра­зом для изделий из специальных видов кера­мики — для крупногабаритных керамических конденсаторов, антенных обтекателей, а также различных изделий сложной формы.

При заливке шликера в пористую, чаще всего гипсовую форму, вследствие поглощения влаги стенками формы на ее поверхности об­разуется достаточно плотный и прочный слой керамической массы.

Различают два основных способа отливки изделий. При сливном способе после образо­вания на внутренней стороне формы слоя мас­сы требуемой толщины оставшийся шликер вы­ливается из формы. При наливном способе от­фильтрованная масса заполняет всю полость формы. Для оформления заготовок с внутрен­ней полостью наливным способом в форму вставляется пористый сердечник.

Горячее литье под давлением применяется преимущественно для изготовления изделий сложной формы с точными размерами из не­пластичных материалов и толщиной стенки не более 10 мм. Литье производится на специаль­ных аппаратах в металлические формы при температуре 70—80 °С и избыточном давлении 0,1—1 МПа.

В форму заливается вакуумированный шликер, который поступает под давлением в полость металлической формы и хорошо ее за­полняет. Затвердевание шликера происходит при охлаждении формы. Метод оформления из­делий очень трудоемок.

Обточка необожженных керамических изделий широко применяется при изготовлении изоляторов и других изделий, имеющих форму тел вращения.

Заготовки для последующей обточки полу­чают методом протяжки (экструзии) пластич­ной массы. В некоторых случаях заготовки мо­гут быть получены и другими способами — изостатическим прессованием, шликерным литьем и т. п.

Для обточки используют горизонтальные и вертикальные токарные станки, снабженные специальными резцедержателями. На обточку материал подается либо в подвяленном (влаж­ная обточка), либо в сухом состоянии (сухая обточка). В некоторых случаях производится обточка заготовок, прошедших предваритель­ный (утильный) обжиг./5/

Сушка, глазурование и обжиг электрофар­форовых изделий. Сушка. Электрофарфоровые изделия, полученные методами протяжки, прессования и другими методами и прошедшие обточку на станках, содержат 17—18 % влаги; несколько меньшую влажность имеют заготов­ки установочных изделий. Для удаления влаги до остаточной влажности 0,2—2,0 % фарфоро­вые изделия подвергаются сушке в сушильных камерах различной конструкции. Чем больше габаритные размеры и толщина стенки изоля­торов, тем меньше должна быть остаточная влажность./6/

Существуют следующие виды сушки изде­лий: конвективная, при которой изделия на­греваются теплым воздухом, уносящим испа­ряющуюся влагу; радиационная, при которой лучистая энергия поступает от электрических нагревателей; радиационно-конвективная, в ко­торой сочетается конвективный и радиацион­ный нагрев. Этот способ наиболее эффективен при сушке крупных и средних изоляторов. Сушка токами промышленной и высокой час­тоты применяется для провялки крупногаба­ритных влажных заготовок.

Для сушки используются сушильные агре­гаты периодического и непрерывного действия. Первые, главным образом, используются для крупногабаритных изоляторов. Для изделий среднего габарита и мелких в основном при­меняют сушилки непрерывного действия (кон­вейерные, туннельные) с большей производи­тельностью.

По способу нагрева изделий существуют сушилки конвективные, радиационные и конвективно-радиационные, по способу использо­вания газов — однократного и многократного насыщения, а также использующие воздух в замкнутом цикле, по способу движения изде­лий в сушильных камерах и каналах — туннельные (с периодическим перемещением из­делий) и конвейерные (с непрерывным гори­зонтальным или вертикальным). Горизонталь­ная конвейерная сушилка представляет собой камеру длиной 8—10, шириной 3—5 и высо­той 3—4 м, вертикальная конвейерная сушил­ка — камеру длиной и высотой 5—6 м. Туннельные сушилки непрерывного действия представляют собой камеру длиной 20 — 25, высотой 2,5—3,5 м. Их ширина зависит от ко­личества параллельно идущих в туннеле ваго­неток с изоляторами.

Глазурование. Электрокерамические изде­лия покрывают тонким (0,1—0,3 мм) слоем гла­зури (стекловидный покров), что значительно повышает их механические свойства, изолиру­ет от воздействия окружающей среды, улучша­ет внешний вид и электроизоляционные свой­ства, обеспечивает самоочистку изоляторов в процессе эксплуатации.

Химический процентный состав (по массе) глазури, используемой при изготовлении изоля­торов в электротехнической промышленности: SiO2—66,0—72,2; А12О3—11,7—17,2; RO—5,7—7,7; R2O—4,2—5,4. Для приготовления коричне­вых глазурей обычно вместо части кварцевого песка вводят фарфоровый бой и красители, со­держание которых в шихтовом составе состав­ляет 16,0—35,4 %.

Красители для глазурей применяются для придания глазури определенного цвета. В ка­честве красителей обычно применяются оксиды железа, хрома, марганца и др., чаще всего — хромистый железняк, марганцевая руда и пиро­люзит. Содержание красителей в глазури со­ставляет 8—13 %.

Химический процентный состав коричневой глазури: SiO2—65,7—68,3; А12О3(ТiO2)—13,4—13,8; Fe2O3—2,1—2,3; СаО —3,8—5,1; MgO—3,7—4,7; Na2O—1,2—2,1; К2О—1,9—2,2; Сr2О3— 2,6—3,1. Сырьем для этих глазурей служат природные материалы.

В радиотехнической и электронной про­мышленности для глазурования широко исполь­зуются стеклоэмали различных марок с темпе­ратурой размягчения 560—710°С. Такие стек­лоэмали на основе силиката свинца с добавкой оксидов металлов BaO, Na2O, K2O и др. харак­теризуются высокими электроизоляционными показателями, приведенными в табл. 11 (см. приложения).

От качества глазурного покрытия зависит механическая прочность глазурованных изделий (наличие микротрещин и других дефектов мо­жет служить причиной снижения этого пока­зателя). Возникновение начальных трещин в глазури зависит от степени гладкости ее поверхности и от обеспечения состояния сжатия глазури на керамическом изделии. Значения на­пряжений в глазурованных изделиях и их рас­пределение зависят от условий обжига и ох­лаждения, от соотношения значений ТКl кера­мики и глазури, от степени развития промежу­точной зоны на контакте керамика — глазурь. Наиболее существенный фактор — различие в значениях ТКl керамического материала и гла­зури. Возникновение цека и отскакивание гла­зури также зависит от значения ТКl. Глазурь только тогда повышает механическую проч­ность керамики, когда она находится в состоя­нии сжатия. Когда ТКl глазури больше ТКl ке­рамики, создается напряжение растяжения, и механическая прочность керамики снижается. Так, при ТКl глазури (4,5—5,5)/10-6 К-1 проч­ность при разрыве глазурованного фарфора со­ставляет 140—130 МПа, а при ТКl глазури (6—7) • 10-6 К-1 — 120—70 МПа.

Высушенные заготовки изоляторов перед обжигом глазуруются методами полива, окуна­ния или распыления глазурной суспензии плот­ностью 1400—1700 кг/м3. Глазурование в за­висимости от размеров заготовок изоляторов осуществляют с применением станков кару­сельного типа, конвейерных машин и подъем­ных устройств для крупных изоляторов.

В проходных и подвесных изоляторах элек­трическое поле по поверхности изоляторов не­равномерно, а в увлажненных и загрязненных изоляторах степень неравномерности резко уси­ливается и приводит к частичным разрядам, а иногда и к перекрытию. В ряде случаев для выравнивания электрического поля, а также для защиты от радио- и телевизионных помех применяют изоляторы полностью или частично покрытые полупроводящей глазурью. Удельное поверхностное сопротивление полупроводящей глазури составляет 102—109 Ом.

Для выравнивания электрического поля (особенно при покрытии внутренней поверхно­сти проходных изоляторов) более благоприятно низкое сопротивление полупроводниковой гла­зури, но при этом должны быть учтены осо­бенности конструкции изолятора. Кроме того, при низком сопротивлении глазури вероятнее возникновение теплового пробоя по глазури. Обычно верхний предел определяют экспери­ментальным путем в зависимости от термоус­тойчивости, сопротивления и условий эксплуа­тации изолятора. При этом под термоустойчи­востью подразумевается температура, при ко­торой удельное поверхностное сопротивление глазури уменьшается в 2 раза по сравнению с сопротивлением при температуре, принятой нормальной. Чем выше эта температура, тем выше термоустойчивость глазури.

Качество изоляторов с полупроводящей глазурью при их эксплуатаци в наружных уста­новках ухудшается вследствие эрозии проводя­щего компонента в местах контакта с металли­ческой арматурой. Износоустойчивость глазурных покрытий зависит от химического состава./6/

Полупроводящая глазурь представляет со­бой композиционный материал преимуществен­но с электронным характером электропровод­ности и состоит из 20—40 % (по массе) элект­ропроводящих кристаллических компонентов и 60—80 % стеклообразующих оксидов. В качест­ве электропроводящих компонентов использу­ют Fe2O3, TiO2, Cr2O3, ZnO, SnO2, Sb2O3 и др. оксиды и их твердые растворы или химические соединения, а в качестве стеклообразующих компонентов обычно применяют оксиды SiO2, А12О3, CaO, MgO, BaO и др.

Полупроводящую глазурь приготовляют различными способами. По одному способу электропроводящие и стеклообразующие окси­ды измельчают и смешивают помолом мокрым способом. Полученный шликер необходимой консистенции наносят на поверхность заготов­ки изолятора по принятой технологии глазурования.

При применении других способов электро­проводящий компонент синтезируют отдельно в виде химического соединения или твердого раствора путем обжига. Полученный продукт измельчают мокрым способом в известных про­порциях, затем осуществляют помол со стекло-образующими компонентами.

Применяемая в электротехнической про­мышленности полупроводящая глазурь для изо­ляторов имеет следующий процентный хими­ческий состав (по массе): F2O3—7,9; А12О3—13,4; SiO2—52,5; TiO2—20,2; CaO—1,07: MgO—1,2; R2O—2,4; потери при прокаливании—2,18. Из такой смеси совместным мокрым помолом в шаровых мельницах приготовляется глазур­ная масса, которая наносится на поверхность заготовки изолятора. Обжиг изоляторов произ­водят в туннельной печи или в горне при тем­пературе 1320—1420 °С. Удельное поверхност­ное сопротивление имеет значение 10—80 МОм, термостойкость составляет 60—70 К, механи­ческая прочность при статическом изгибе гла­зурованных стандартных образцов повышается примерно на 15—20 %.

Опубликовано большое количество работ с описанием получения полупроводящей глазури. Используя оксиды металлов в качестве прово­дящего компонента глазури ТiO2—10÷40, Fe2O3—50÷10, Сг2О3—40÷50% (по массе) и стеклообразующие оксиды SiO2 — 73÷77, А12О3— 12÷17, MgO —2÷9, CaO—2÷8 % (по массе), совместным смешением можно получить глазури с удельным сопротивлением 10—1000 МОм. Сопротивление глазури может быть уменьшено за счет уменьшения концентрации ТiO2. Полупроводящая глазурь на базе окси­дов металлов Fe2O3—16, ТiO2—7,2, SnO2—13,6 в качестве электропроводящего компонента и оксидов металлов SiO2—44,1, А12О3—8,6, CaO— 2,9, MgO—1,7, R2O—2,2 % (по массе) в каче­стве стеклообразующего компонента может иметь удельные поверхностные сопротивления 3,4—12,2 МОм, термостойкость 70 К.

При этом следует иметь в виду, что с изменением температуры обжига изоляторов сопро­тивление глазури вследствие кристаллизации изменяется в широких пределах.

Температура об­жига, °С 1270 1320 1350 1380

Удельное поверх­ностное

сопро­тивление, МОм 12,0 3,4—8 18—23 1500—3500

Японская фирма «Нихон Гайси» в качестве электропроводящего компонента полупроводя­щей глазури рекомендует смесь оксидов SnO2 и Sb2O5, а в качестве стеклообразующего компонента — обычную глазурную массу (SnO2—85÷94 и Sb2O5—6÷15 %, в молярных долях). Приготовление глазури осуществляется следу­ющим образом. Компоненты SnO2 и Sb2O5 смешивают и обжигают при 1000—1300°С в окислительной атмосфере; 25—45 % (по мас­се) обожженного материала измельчают до среднего размера частиц 44 мкм, смешивают с 55—75 % (по массе) обыкновенной глазурной массы для изоляторов и обжигают в течение 2 ч в окислительной атмосфере при 1200—1430 °С. Полученный спек измельчают до среднего раз­мера частиц 44 мкм. Далее, не менее чем 70 % спека смешивают с глазурной массой (не бо­лее чем на 30 %). Глазурование производят по принятой в керамической промышленности тех­нологии. Обжиг глазурованных заготовок изо­ляторов осуществляют в восстановительной ат­мосфере согласно принятому режиму обжига. Наилучшие результаты при испытании подвес­ных изоляторов были получены при технологи­ческом процессе приготовления полупроводя­щей глазури, описанном далее. Соотношение электропроводящих оксидов: SnO2—88, Sb2O5— 12 % (в молярных долях). Смешение компонен­тов с частицами размером не более 44 мкм производится в фарфоровых барабанах, и та­кая смесь для образования твердого раствора замещения обжигается в электрической печи при 1150°С в течение 2 ч. Электропроводящий порошок в количестве 35 % (по массе) смеши­вают с 65 % глазурной массы для изоляторов и обжигают в электрической печи в течение 2 ч при 1350°С. Спек измельчают. Удельное по­верхностное сопротивление такого спека 5—12 МОм. Спек измельчают до среднего размера частиц 44 мкм. Производственная полупрово­дящая глазурь содержит 80 % измельченного порошка спека и 20 % каолина или глины. Гла­зурованная поверхность имеет слегка серова­тый цвет, сопротивление 26—42 МОм. Изоля­торы выдерживают 16—16,5 кВ без пробоя в условиях сильного загрязнения и увлажнения. По опубликованным данным такие глазури об­ладают высокой коррозионной стойкостью по отношению к электролитам и высокой термо­стойкостью (более 100 К).

Обжиг фарфоровых изделий является важ­ным, в ряде случаев завершающим процессом производства. В процессе обжига, преимущест­венно в стадии нагрева, удаляется вода, выде­ляются газы, происходят полиморфные превращения материала, изменяются размеры и плот­ность, образуются кристаллические и аморфные фазы и происходят другие процессы. Обжиг и охлаждение ведутся при заданных температурном, газовом и гидравлическом режимах с учетом габаритов изделий и конструкции приме­няемых печей. Для обжига фарфоровых изде­лий используют пламенные печи периодического и непрерывного действия, для малогабаритных изделий и изделий специального назначения — электрические печи периодического и непрерыв­ного действия с использованием силитовых и других нагревателей и на основе дисилицида молибдена, а иногда нагревателей с защитной средой. Обжиг керамических изоляторов явля­ется наиболее дорогостоящей операцией техно­логического процесса приготовления фарфора. Для обжига крупногабаритных изоляторов также используют пламенные печи периодичес­кого действия, круглые (горны), прямоуголь­ные, одно-, двух- и трехэтажные, со стационар­ным или выдвижным подом. Рабочий объем круглых печей, используемых в производстве, составляет от нескольких до 120 м3. Нагрев пе­чей производится за счет тепла от сгорания жидкого или газообразного топлива; продукты сгорания поступают в рабочую камеру и обо­гревают находящиеся в горне изоляторы; ох­лаждение производится воздухом, проходящим через камеру с обожженными изоляторами. Об­жиг изделий в пламенных печах периодического действия производится в капселях, устанавли­ваемых на поду печи. Обжиг в больших круг­лых печах требует большого расхода топлива и затрудняет механизацию процесса загрузки изоляторов.

За последние годы начали применять прямоугольные камерные печи объемом до 80 м3 с высоким подом, особенно для обжига однотип­ных крупногабаритных заготовок изоляторов стержневого типа, применение которых позво­ляет механизировать и трудоемкие технологи­ческие процессы, повысить производительность труда, сократить цикл обжига, снизить удель­ный расход энергии, автоматизировать режим и среду обжига.

Печи непрерывного действия дают возмож­ность бесперебойного выпуска готовой продукции при меньшем расходе топлива. Они значи-тельно экономнее периодических печей. Условия труда обслуживающего персонала значи­тельно лучше, чем при работе на периодических печах.

Туннельные печи дают возможность для механизации и автоматизации процесса обжига. По этим причинам туннельные печи широко применяются для обжига большого ассортимен­та изоляторов и являются наиболее перспек­тивными. Для обжига фарфоровых изоляторов используются туннельные печи нескольких типов длиной 140, шириной до 2,3 и высотой до 2,2 м. Обжигаемые изделия устанавливаются в вагонетках, футерованных огнеупорным ма­териалом. Режим обжига (температурные, га­зовые и гидравлические параметры) по всей длине печи контролируется контрольно-измери­тельными приборами и во времени остается по­стоянным.

Основой правильного ведения процесса об­жига является соблюдение температурного и газового режима (создание нейтральной, окис­лительной или восстановительной среды). Ре­жим обжига выбирается в зависимости от свойств материалов и размеров изделий. Фак­тическая температура обжига, изделий может несколько отличаться от оптимальной, что не отражается на качестве изделий (в пределах интервала спекшегося состояния). Этот интервал является важной производственной характеристикой электрокерамического материа­ла: для разных материалов он находится в пределах 10—80 К. Температура обжига для различных керамик составляет 1100—2000 °С и более./3/


Информация о работе «Электроизоляционная керамика»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 59942
Количество таблиц: 14
Количество изображений: 0

Похожие работы

Скачать
158421
31
33

... , новое производство является экономически более выгодным. Природопользование и охрана окружающей среды   Данная исследовательская работа заключается в исследовании и разработке составов масс высоковольтного фарфора с повышенными электромеханическими характеристиками. В данной работе используются сыпучие вещества. При их взвешивании, помоле и смешивании возникает значительное пылевыделение. ...

Скачать
26036
0
0

... широкое применение в технологии производства чистых веществ в качестве конструкционного материала. По электрическим свойствам кварцевое стекло относят к хорошим высокочастотным диэлектрикам (e = 8, r ³ 1016 Ом× м; tgd = 2 ×10-4 на частоте 106 Гц.). Щ е л о ч н ы е с т е к л а б е з т я ж е л ы х о к и с л о в или с незначительным их содержанием. Эта группа стекла состоит из двух ...

Скачать
31535
1
0

... между отдельными типами керамики обусловлено спецификой их внутренней структуры, то есть составом и соотношением отдельных фаз, составом и структурой глазури. Свойства керамики Керамические изделия и материалы классифицируют по назначению и свойствам, по основному используемому сырью или фазовому составу спекшейся керамики. В зависимости от состава сырья и температуры обжига керамические ...

Скачать
17652
3
3

... применяли для изготовления дешёвой посуды; однако фаянс изготовленный Веджвудом в Англии, почти совершенно вытеснил обычный фаянс из домашнего обихода. Более тонкий фаянс пригоден для художественной керамики. По своим свойствам фаянсу приближается майолика, покрываемая цветной глазурью. Обычные гончарные изделия, например горшки для цветов, глиняная посуда, также имеют пористый излом. На них ...

0 комментариев


Наверх