8.2.2. Вторичные отстойники.

Вторичные отстойники являются составной частью сооружений биологической очистки, располагаются в технологической схеме непосредственно после биоокислителеЙ и служат для выделения активного ила из биологически очищенной воды, выходящей из аэротенков, или для задержания биологической пленки, поступающей с водой из биофильтров.

Горизонтальные вторичные отстойники выполняются с шириной отделения 6 и 9 м, что позволяет их блокировать с типовыми аэротенками, сокращая при этом площадь, занимаемую очистными сооружениями. Для сгребания осевшего активного ила к иловому приямку в горизонтальных отстойниках используют скребковые механизмы цепного или тележечного типов.

Расчет вторичного отстойника

Максимально часовой расход сточных вод:

qmax = = =1283 м3 /ч,

 

где Кобщ– коэффициент общей неравномерности, Кобщ= 1,5

Вторичные отстойники, устраиваемые после аэротенков, рекомендуется рассчитывать по нагрузке:

qssa= ==1,4 м32 ч,

 

где–Kss -коэффициент использования объема зоны отстаивания,

принимаемый для горизонтальных отстойников, Kss= 0,45.

Ii - иловой индекс, Ii = 71,2 см3

ai- концентрация активного ила в аэротенке, ai= 3 г/л.

at – концентрация ила в осветленной воде, at.= 15 мг/л.

Hget -глубина отстойника, принимаем Hget.= 2,5 м

Площадь одной секции, при n= 4

 

F = == 229 м2

Ширину одной секции принимаем B = 6м. При этом длина отстойника составит:

L= = 38 м


8.3.Сооружение глубокой доочистки.

 

Сточные воды после полной биологической очистки на очистных сооружениях имеют следующие показатели.

БПКполн = 15 мг/л, взвешенные вещества 15 мг/л.

Эти показатели не соответствуют «правилам охраны поверхностных вод от загрязнений сточными водами. В связи с этим предусмотрена глубокая доочистка сточных вод на барабанных сетках и песчаных фильтров.

Эффект очистки после барабанных сеток:

·     по БПКполн = 10%

·     по взвешенным веществам = 20%

Концентрация загрязнений:

БПКполн = 15*0,9= 13,5 мг/л

Взвешенные вещества = 15* 0,8= 12 мг/л

Эффект очистки после фильтров:

·     по БПКполн = 40%

·     по взвешенным веществам = 50%

Концентрация загрязнений в сточных водах:

БПКполн = 13,5*0,6 = 8 мг/л

Взвешенные вещества = 12* 0,5 =6 мг/л.

Это вполне обеспечивает высокий эффект очистки сточных вод, т.к. необходимая степень очистки сточных вод с учетом их разбавления речной водой.

·     по БПКполн = 96%, допустимая концентрация LстБПК = 9,15 мг/л

·     по взвешенным веществам – 97,1%

·     предельное содержание взвешенных веществ в сточной воде m= 6,72 мг/л

8.3.1.Барабанные сетки

Барабанные сетки принимаем по среднечасовому расходу

 Qср.час= 1118,7 м3

Принимаем 1 рабочую барабанную сетку типа БСБ Q=1050 м3/час, с типоразмером 1,5*3,7. Предусматриваем 1 резервную.

8.3.2.Фильтры

Песчаные фильтры открытые с нисходящим потоком (однослойные мелкозернистый с подачей воды сверху вниз) и низким отводом промывной воды. Загрузка - кварцевый песок.

Д = 1,5 : 1,7 мм, h= 1,3 м

 Поддерживающие слои гравия:

d= 20 – 40 мм, h= 250 мм

d= 10 – 20 мм, h= 150 мм

d= 5-10 мм,  h= 50 мм

d= 2-5 мм, h= 200 мм

В нижней зоне фильтра в гравийном слое располагается водная и воздушная распределительная системы из стальных дырчатых труб.

Суммарная площадь фильтров:

Fср = ,

где Q – производительность очистной станции, Q= 20528,6 м3/сут

K- коэффициент общей неравномерности, К= 1,5

Т - продолжительность работы станции в течении суток, Т = 24 часа

vф - скорость фильтрования, vф = 7 м/ч

m – расход воды на промывку барабанных сеток учитывает

коэффициент, m = 0,003

W1 - интенсивность первоначального взрыхления верхнего слоя

загрузки продолжительностью t1= 2 мин = 0,033ч,

W1= 18 л/(см2),

W2 - интенсивность подачи воды с продолжительностью водо-воздушной

промывки t2 = 8 мин = 0,13 ч; W2= 3л/м3с

W3 - интенсивность промывки продолжительностью t3 = 6 мин = 0,1

часа, W2 = 6 л/см2

tu- продолжительность простоя фильтра из-за промывки, tu = 0,33 ч.

n – количество промывок, n=1.

Fср = =193 м2

Число фильтров определяем по эмпирической формуле Д.М. Минца.

Nф = 0,5 = 0,5 = 6,9 шт.

Принимаем Nф= 7 шт.

Площадь одного фильтра

F = = = 27,5 м2

Размеры фильтра в плане 5,5*5 м

Принимаем число фильтров, находящихся на ремонте Np = 1. Тогда скорость фильтрования воды при форсированном режиме:

V = = = 8,2 м/с

Рассчитываем распределительную систему фильтров:

Количество промывной воды, необходимой для одного фильтра:

qпр = F * W3 =27.5* 6 =165 л/с

Диаметр коллектора распределительной системы находим по скорости входа промывной воды (рекомендуется Vкол= 1…1,2 м/с)Д = 400 мм,V = 1,13 м/с.

Принимаем расстояние между ответвлениями распределительной системы m= 0,3 м.

Площадь дна фильтра, приходящаяся на каждое ответвление, будет равна (при наружном диаметре коллектора d = 450 мм)

fотв= ( 5-0,45 ) * 0,3 = 1,4 м2

Расход промывной воды, поступающей через одно ответвление:

qотв= fотв * W3 =1,4 * 6 = 8,2 л/сек

Диаметр труб ответвлений принимаем 65 мм, vотв= 1,66 м/с (скорость входа воды в ответвление ).

Для обеспечения 95% (обеспеченности) равномерности промывки фильтра промывная вода должна подаваться под напором в начало распределительной системы.

Напор определяем по формуле:

Ho = 2,91*ho + 13,5  = =6,7 м,

где ho – высота загрузки фильтра песком,ho= 1,3 м.

Расход промывной воды, вытекающей через отверстие в распределительной системе:

qпр = m S¦о,

где m – коэффициент расхода (для отверстий) m= 062;

о- общая площадь отверстий

о= qпр / m = 0,165 /0,62 * = 0,02 м2

При dотв= 10 мм площадь одного отверстия ¦о= 0,78 см2

Общее количество отверстий.

n = S¦о/  ¦о  = 200/ 0,78 =256 шт.

Общее число ответвлений на каждом фильтре:

5,5 / 0,3= 18 штук

Число отверстий, приходящееся на каждое ответвление:

256/18= 14 шт.

При длине каждого ответвления Lотв= 5 – 0,45 = 4,55 м расстояние между отверстиями равно:

Lотв= = = 0,325 м

Произведем расчет сборных отводных желобов фильтра. Принимаем два желоба с треугольным основанием.

Расстояние между желобами – не более 2,2 м.

Расход промывной воды, приходящейся на один желоб:

qж = = =82,5 л /с= 0,082 м/с

Ширина желоба

B =K ,

где К – коэффициент для желоба с треугольным основанием, К = 2,1

а - отношение высоты треугольной части желоба к половине его

ширины, а= 1,0

B = 2,1 = 0,44 м

Высота треугольной части желоба равна:

X= 0,5 B=0,5 * 0,44 = 0,22 м;

Высота прямоугольной части желоба будет следующей:

h1=1,5X= 1,5 * 0,22 = 0,33 м.

С учетом толщины стенок б= 0,8 см, строительные размеры желоба будут:

В = 44 + 1,6 = 45,6 см

H = 33 + 22 + 0,8 = 55,8 см.

Площадь поперечного сечения желоба в месте его примыкания к сборному каналу определяем по формуле Д.М. Минца:

¦ = 1,73 = 1,73 = 0,12 м2

Наименьшее превышение кромки желоба над уровнем воды в нем составит 8 см.

Высота кромки над уровнем загрузки равна:

Dhж= + 0,3 = + 0,3 =0,625м,

 где l- относительное расширение фильтрующей загрузки, l= 25%.

Расстояние от низа желоба до верха загрузки фильтра будет равно:

0,625 – 0,558 = 0,067м

8.4. Сооружения для обработки осадка сточных вод

8.4.1.Песковые площадки

 

Песковые площадки предназначены для просушки осадка, идущего с песколовок. Количество песка, задерживаемого в песколовке за сутки, равно Woc= 1,42 м3/ сут. Соответственно, количество песка за год составит:

Wгод= 365 * 1,42 = 518,3 м3/год

Рассчитаем общую площадь песковых площадок по формуле:

F= =  = 173 м2

где Азагр - годовая загрузка песка на площадке, Азагр.= 3 м32.

Определим площадь карты, если количество карт n= 4

Fk = = = 43,25 м2

Принимаем размер карты 6х7м

8.4.2.Аэробный стабилизатор

Метод аэробной стабилизации заключается в длительном аэрировании осадка в сооружениях типа аэротенках (стабилизаторах).

Этот метод наиболее применим к случаю с избыточным илом.

 Аэробная стабилизация – это сложный биохимический процесс, в результате которого происходит распад (окисление) основной части органических беззольных веществ осадка. Оставшееся органическое вещество осадка является стабильным -–неспособным к последующему разложению (загниванию).

Эффективность процесса аэробной стабилизации зависит от продолжительности процесса, температуры, интенсивности аэрации, от состава и свойств окислительного осадка.

Расчет аэробного стабилизатора.

Определяем количество активного ила, поступающего в аэробный стабилизатор:

Исух = Q,

где B – вынос активного ила из вторичных отстойников, B = 15 мг/л

C- концентрация взвешенных веществ в воде, поступающей на

 первичные отстойники, С = 230 мг/л

Э - эффективность задержания взвешенных веществ в первичных

отстойниках, Э = 35%

а - коэффициент прироста активного ила, а = 0,3 : 0,5.

Принимаем а = 0,4

La - БПКполи поступающих стоков в аэротенк, La = 229,7 мг/л

Q- средний расход сточных вод, Q = 20528,6 м3/сут

Исух =  20528,6 = 4,03 т/сут

Объем ила, поступающего из аэробного стабилизатора:

Wил=  = = 1007,5 м3 / сут,

где Рил – влажность уплотненного активного ила, Рил = 99,6%

Рил - плотность активного ила, Рил = 1 т /м3

Возраст ила:

i = = = 3,9 сут,

где ta– продолжительность обработки воды в аэротенке, ta = 4,7 ч

aa- доза ила в аэротенке, aa = 3 г/л

Cввсм- содержание взвешенных веществ, поступающих в аэротенк,

Cввсм = 150 мг/л

Время стабилизации неуплотненного активного ила в стабилизаторе:

tил=  ==6,1 сут,

 где Та, Тс – температура сточной воды, соответственно, в аэротенке и в

стабилизаторе, Та = Тс = 15°С

Требуемый объем аэробного стабилизатора:

Woc = Wил tил = 1007,5 * 6,1 = 6145,8 м3

Длина аэробного стабилизатора

L = = =76 м,

где n - количество секций, n= 2 шт

В – ширина секции, В = 9м

Н - Глубина стабилизатора, Н = 4,5 м

Удельный расход воздуха принимаем 2 м3 на 1 м3 емкости стабилизатора, отсюда его расход:

D =2 Woc = 2* 6145,98 = 12291,6 м3/час

8.4.3. Сооружения по обезвоживанию осадка

 

После аэробного стабилизатора осадок поступает в здание, по обезвоживанию осадка, в котором установлены вакуум – фильтры.

 Количество сухого вещества обезвоженного осадка в сутки определяется по зависимости:

W1=== 15,4 т/сут,

где Wил – количество осадка, поступающего из аэробного стабилизатора,

Wил = 1007,5 м3/сут,

Рил – влажность осадка, Рил = 98,5%

Принимаем производительность вакуум-фильтров по СНиПу 2.04.03-85 П = 25 кг/час. При работе вакуум-фильтров 24 часа в сутки необходимая площадь поверхности фильтров составит:

Fф = = 26 м2

Принимаем 6 рабочих и два резервных вакуум-фильтра типа БОУ-5-1,75 с площадью поверхности фильтрования 5 м2 каждый.

8.4.4. Иловые площадки

 

Для аварийных выпусков осадка или при ремонте вакуум-фильтров предусматриваем использование иловых площадок.

Иловые площадки выполняем на естественном основании, так как грунт-супесь и уровень грунтовых вод ниже 7,2 м.

Суточное количество осадка составляет:

Wocсут =1007,5 м3/сут

Годовое количество осадка составляет:

Wocгод= Wocсут *365=1075 * 365 = 367737,5 м3/год

Количество осадка за пол года составляет:

Wocгод /2= 183868,8 м3/год

Полезная площадь иловых площадок

Fпол=  ==170248,8м2,

где- h1 -годовая иловая нагрузка на иловые площадки, - h1 = 1,2 м32

(/1/ табл. 64)

K – климатический коэффициент, K = 0,9

Так как иловые площадки планируется использовать только в аварийных случаях, то срок их работы ограничиваем 1 месяцем.

Требуемая полезная площадь составит:

Fполтр= =28374,8 м2

 Cогласно СниП 2.04.03-85, при удалении осадка из отстойников под гидростатическим давлением вместимость приямка следует принимать равной объему осадка до 2 суток.

Объем осадка за 2 суток составит 2015 м3. Высота заливки единовременно иловых площадок принимается hсм= 0,25 м. Следовательно, площадь единовременной заливки составит.

 Fзаливки =8060 м2

Площадь одной карты принимаем равной площади единовременной заливки. Размер карт принимаем 200:40 м. Количество карт принимаем n = 4 шт.

8.5.Подбор воздуходувок

 

Источником требующегося для биохимических процессов кислорода в аэротенках и аэробном стабилизаторе является воздух, подаваемый с помощью воздуходувок, которые устанавливаем в производственном здании.

Расход воздуха

Qair =(Qat + Q эрл) 1,03,

где Qat – удельный расход воздуха, Qat = 13683,9 м3

Q эрл = 1,1 qw = 1,1 * 1118,7 = 1230,6 м3

Qair = (13683,9+ 1230,6) * 1,03 = 15315,9 м3

Принимаем воздуходувки типа 360 –21 – 1, 4 рабочих и 1 резервный, с объемом засасывания воздуха 22500 м3/ч., давлением нагнетания 1,8 атм., мощностью электродвигателя 800 кВт.

8.6.Расчет хлораторной.

Дезинфекция сточных вод производится для уничтожения содержащихся в них патогенных микробов и устранения опасности загрязнения водоема этими микробами при спуске в него отстоянных или биологически очищенных сточных вод.

Дезинфекцию сточной воды производим хлорированием.

В соответствии со СНиП 2.04.03 – 85, доза активного хлора, необходимая для полной дезинфекции сточной воды принимается 3 г/м3.

Потребный максимально часовой расход хлора:

W clmax час = a qmax час = 3 *1283,0 = 3849,0 г/час = 3,8 кг/ч

Среднечасовой расход хлора:

W ср.час= a =3 = 2,6 кг/ч

Суточный расход хлора:

Wсут = 24 Wср. час  = 24 * 2566 = 61584 г/сут = 62,6 кг/сут.

Месячный расход хлора:

Wмес=30 Wсут = 30 * 62,6 = 1848 кг/мес.

 

Принимаем хлораторы ЛОНИИ – 100 с ротаметром РС – 5 1 рабочий и 1 резервный.

Смеситель «лоток Поршаля» с шириной горловины 230 мм, шириной подводящего лотка 450 мм, длиной лотка 5,85 м, общей длиной смесителя 9,47м.

8.7. Контактный резервуар.

 

Контактный резервуар предназначен для обеспечения контакта хлора с водой. Производим расчет контактного резервуара типа горизонтального отстойника.

Объем контактного резервуара:

W === 641,5 м3

Площадь одной секции контактного резервуара:

F = ==106.9 м2,

где h - глубина пропускной части h= 3м

n – число секций, n = 2

Принимаем размеры секции BxL = 10:10 м

9. Локальные очистные сооружения. Больницы. Станция нейтрализации.

Станция очистки стоков состоит из трех узлов:

- узел приготовления реагентов;

- узел очистки хромосодержащих стоков;

- узел очистки цианосодержащих стоков.

Работа станции очистки спецстоков осуществляется следующим образом: хромосодержащие стоки забираются из резервуара усредителя насосом и подаются в реакторы обезвреживания (2 шт.)

Обезвреживание стоков в рабочем реакторе производится так: при постоянной подаче сжатого воздуха подается в случае необходимости раствор серной кислоты; при pH=3 прекращается подача серной кислоты и подается раствор бисульфата натрия, когда концентрация Cr6+ снизится до нуля, прекращается подача бисульфата натрия и начинается подача (натра) раствора едкого натрия для доведения pH до 8-9; в щелочной среде трехвалентный хлор переходит в нерастворимую гидроокись; прекращается подача воздуха и обезвреженные стоки сбрасываются в отстойник.

Цианосодержащие стоки забираются из резервуара-усреднителя насосами и подаются в реакторы обезвреживания (2шт.). Обезвреживание стоков в рабочем реакторе производится так: при постоянной подаче сжатого воздуха, в случае необходимости дозируется раствор едкого натрия и начинается хлорирование раствора; когда концентрация цианов снизится до нуля, прекращается подача хлора; в щелочной среде ионы меди переходят в нерастворимую гидроокись меди; прекращается подача воздуха и обезвреженные стоки сбрасываются в отстойник.

9.1. Расход и состав сточных вод.

Сточные воды гальванического отделения поступают от промывки изделий в проточной воде после обезжиривания, травления. нанесения защитных покрытий, а также от периодически сливаемых отработанных растворов рабочих ванн. В состав загрязнений входят кислота совместно с хроматами и щелочи совместно с цианидами. Количество промывок цианосодержащих стоков составляет 0,4 м3 / час, 3 м3 / сут.

Количество промывок хромосодержащих стоков составляет 0,4 м3 / час, 3 м3 / сут.

Расход цианосодержащих отработанных растворов за расчетный период (1 раз в 0,5 года ) составляет 0,08 м3; расход хромосодержащих отработанных растворов за расчетный период ( 1 раз в 7 дней ) составляет 0,08 м3.

Количество загрязнений в промывных цианосодержащих стоках составляет:

Cu (CN) -90 г/час, 06 кг/сут;

KCN -110 г/час, 0,7 кг/сут;

CN -70 г/час, 0,45 кг/сут;

Na2CO3 -100 г/час, 0,7 кг/сут.

Количество загрязнений в промывных хромосодержащих стоках составляет:

CrO3 -460 г/час, 3,3 кг/сут.

H2SO4 -20 г/час, 0,14 кг/сут.

Количество загрязнений в отработанных цианосодержащих растворах составляет:

Cu (CN) – 1,8 кг/сут;

KCN – 2,2 кг/сут;

CN - 0,4 кг/сут;

Na2CO3


Информация о работе «Водоотведение и очистка сточных вод города Московской области»
Раздел: Технология
Количество знаков с пробелами: 146454
Количество таблиц: 38
Количество изображений: 3

Похожие работы

Скачать
48712
1
0

... воды от жилого поселка будут очищаться с надлежащим качеством, до ПДК водоемов рыбохозяйственного назначения. 3.1 Разработка рекомендаций по совершенствованию системы очистки бытовых сточных вод Для достижения НДС МУП Раменского района «Гжельское ПТО КХ» в 2009-2010 гг. планирует проводить следующие мероприятия: 1. Своевременная выгрузка илового осадка. 2. Контроль за работой воздуходувок ...

Скачать
59392
3
1

... его существующие и перспективные гидрологические и санитарные условия. Необходимая степень очистки сточных вод выражается уравнением: Сстq+CpaQ(aQ+q)Cпр.д, Где Сстq – концентрация загрязнений в сточных водах, с которой они могут быть спущены в водоём, в г/м3; Ср – концентрация загрязнений в водоёме выше места выпуска сточных вод в г/м3; Q – расход воды в водоёме в м3/сек; Q – ...

Скачать
52206
14
10

... сушки корпуса. 5.   Вода не должна содержать абразивных веществ, вызывающих повреждение лакокрасочного покрытия автомобиля и стекол. 3.4. Выбор способа очистки и технологического оборудования для сточных вод, образующихся на АТП ОАО «Автотранс». На предприятии имеются пятикаскадные очистные сооружения, представляющие собой бетонные резервуары общей емкостью 800 м3. Неудобство такого способа ...

Скачать
101686
14
0

... подземных вод каменноугольных отложений чрезвычайно разнообразны. Поэтому глубины трубчатых колодцев, конструкция фильтров и оборудование варьируется в широких пределах.  По условиям залегания водоносных горизонтов, по качеству вод территорию области можно разделить на семь гидрогеологических районов. 1. Южный район имеет трубчатые колодцы, питающиеся водами серпуховской и окской свит ...

0 комментариев


Наверх