13. Суммарный коэффициент теплообмена

kт.с = kт.к + kт.и = 10,565 + 1,887 = 12,452 Вт/(м2.К).

(Значение используется в программном расчёте токоведущего контура для Г2).


14. Площадь поверхности подвижных контактов, общей длиной S = 3.l.2..r = = 3.0,175.2..0,0125 = 0,04123 м2 (см. данные из п. 3.4.).


15. Активное сопротивление ТЭ при ном = 57С (см. данные из п. 3.4.)

R=kд.п.0.(1+cu.ном).l/S=1,034.1,62.10-8.(1+4,33.10-3.57).0,175/4,909.10-4=7,446.10-6 Ом.


16. Суммарный тепловой поток, выделяющийся в трёх подвижных контактах при номинальном токе Ф = 3.Iном2.R = 3.6302.7,446.10-6 = 8,866 Вт (см. п. 3.4.).


17. Температура поверхности ТЭ

ном = Ф/(kт.с.S) + 0 = 8,886/(12,452.0,04123) + 40 = 57,3 С.


Кроме нагрева подвижных контактов имеет место нагрев в контактных узлах (самый значительный по сути!), неподвижных контактах, алюм. шинах, соединяющих выводы проходных изоляторов с неподвижными контактами. Всё это рассматривается и учитывается в программном расчёте токоведущей системы высоковольтных выключателей {5}.


3.6. ПОРЯДОК ТЕПЛОВОГО РАСЧЁТА ТОКОВЕДУЩИХ СИСТЕМ

МЕТОДОМ ТЕПЛОВЫХ СХЕМ


1. Разработка тепловой модели токоведущих систем (ТС) аппарата в виде стержневой системы, в которой выделяются участки однородности.

2. По тепловой модели строится тепловая схема. Несовершенство теплового и электрического контакта на стыке стержней учитывается в тепловой схеме источниками теплового потока и теплового сопротивления.

3. Расчёт всех сопротивлений и источников, входящих в тепловую схему.

4. Тепловая схема рассчитывается по методам, применяем в электротехнике, и находятся температуры на границах каждого участка.

5. По уравнениям связи для каждого участка определяются параметры, необходимые в дальнейшем для построения графика распределения теплового потока вдоль токоведущей системы.


3.7. ПОСТРОЕНИЕ ТЕПЛОВОЙ МОДЕЛИ ТОКОВЕДУЩЕЙ СИСТЕМЫ


Для теплового расчёта ТС ВГБ-35 программой {5}, необхо­димо упростить исходную токоведущую систему до системы коаксиальных ци­линдров, что в принципе возможно, при замене корпуса бака выключателя экви­валентным цилиндром того же объёма, имеющим ось симметрии, совпадающую с осью симметрии одного из шести проходных изоляторов выключателя. (Рассматриваем только одну фазу и в силу вертикальной симметрии конструкции бака с проходными изоляторами, ограничиваемся следующей цепочкой: ввод проходного изолятора  токопровод изолятора  алюминиевая шина, соединяющая вывод изолятора с неподвижным контак­том  контактный узел  подвижный контакт половинной длины  элегаз). Алюминиевая шина прямоугольного сечения заменяется эквивалентным стержнем, имеющим такое же сечение и длину.

График распределения теплового потока данной модели (см. приложение) необходимо зеркально отразить по горизонтали из-за причин, обрисованных выше. Схема тепловой модели показана на рис. 3.7.




Где 1 - токопровод проходного изолятора; 2 - воздушный промежуток; 3 - фарфор; 4 - винипол; 5 - стеклоэпоксид; 6 - сталь колпака трансформатора тока; 7 - изоляция трансформатора тока; 8 - подвижный контакт половиной длины; 9 - алюминиевая шина; 10 - элегаз под давлением 0,45 МПа; 11 - стальной корпус бака; I..VIII - участки однородности токоведущей системы; КУ -контактный узел.


3.8. ИСХОДНЫЕ ДАННЫЕ ДЛЯ МАШИННОГО РАСЧЁТА


Исходные данные для расчёта токоведущего контура пр-мой {5} приведены в таблице 3.3.


Таблица 3.3


Параметры

I

II

III

IV

V

VI

VII

VIII


L, м

0,075

0,425

0,010

0,180

0,040

0,180

0,190

0,090


S, м*10-6

78,540

78,540

78,540

78,540

78,540

78,540

58,786

78,540


F, м. кв.*10-6

490,874

490,874

490,874

490,874

490,874

490,874

275,0

490,874


, Омм*10-8

1,62

1,62

1,62

1,62

1,62

1,62

3,30

1,62


, Вт/(м°С)

390

390

390

390

390

390

160

390


, 1/°С*10-3

4,33

4,33

4,33

4,33

4,33

4,33

4,2

4,33

1

r2/r1

0,050/

0,0125

0,030/

0,0125

0,040/

0,0125

0,040/

0,0125

0,100/

0,0125

0,040/

0,0125

0,230/

0,009

0,230/

0,025


P, МПа

0,1

0,1

0,1

0,1

0,1

0,1

0,45

0,45

2

r3/r2

0,070/

0,050

0,050/

0,030

0,115/

0,040

0,080/

0,040

0,115/

0,100

0,230/

0,040

0,250/

0,230

0,250/

0,230


P, МПа


0,1


0,1

0,1

0,45



3

r4/r3


0,090/

0,050


0,100/

0,080

0,125/

0,115

0,250/

0,230




P, МПа




0,1





4

r5/r4




0,110/

0,100






P, МПа










Где L - длина участка с однородной изоляцией, м; S - периметр токоведущего стержня на участке однородности, 10-6 м, F - сечение токопровода на участке однородности, 10-6 м2; 0 - удельное сопротивление материала токопровода при 0С, Ом.м.10-8;  - коэффициент теплопроводности материала токопровода на участке при 0С, Вт/(м.С);  - температурный коэффициент сопротивления материала токопровода, 10-3 К-1; P -абсолютное давление слоёв изоляции, МПа; 1..4 - слой однородной изоляции на участке; r2/r1..r5/r4 - внешний/внутренний диаметры слоёв изоляции. I..VIII - участки однородности токоведущей системы.



Информация о работе «Высоковольтный элегазовый баковый выключатель ВГБ-35»
Раздел: Технология
Количество знаков с пробелами: 77442
Количество таблиц: 6
Количество изображений: 32

Похожие работы

Скачать
51845
3
14

... - при коротких замыканиях; - при внешних воздействиях (штормовой ветер или землетрясение). 4. ОТДЕЛИТЕЛИ И КОРОТКОЗАМЫКАТЕЛИ 4.1 ОБЩИЕ СВЕДЕНИЯ В настоящее время разработаны типовые схемы высоковольтных подстанций без выключателей на питающей линии. Это позволяет удешевить и упростить оборудование при сохранении высокой надежности. Для замены выключателей на стороне высокого напряжения ...

0 комментариев


Наверх