60 кДж/кг. (для активной 30-60 кДж/кг),
Степень реакции примем r = 0,2
1) Определяем скорость пара на выходе из сопел.
С1= 44,72´f´Öh0.1. = 44,72´0,95´Ö60 = 329,1м/с
Где ф = 0,95 - скоростной коэффициент сопел;
2) Задаем отношение скоростей для 1 не регулируемой активной ступени.
U/Сф = 0,45
3) Определяем окружную скорость 1 не регулируемой ступени.
U = С1´(U/Сф) = 329,1´0,45 = 148,1м/с
4) Определяем средний диаметр 1 не регулируемой ступени
dср = 60 U/p´n = 60´148,2/3,14´ 3000 = 0,94 м.
Где и =3,14 п = 3000 об./мин.
5) Определяем высоту сопловой решетки.
L1=10³´Gчвд´V1t/pdср´m´С1t´sina1´е
Где Gчвд – расход пара на чвд, рваный 336 кг/с
V1t - удельный объем пара в конце изоэнторпийного расширения в соплах, определяется из hs диаграммы. И равен 0,028 м'/кг
С1t – Теоретическая скорость истечения пара из сопловой решетки.
С1t=44,724Öh0.1=346 м/с
е – степень парциальности, принимается равным единице.
a1э – эффективный угол выхода потока из сопловой части. Принимаем 12°.
m - коэффициент расхода сопловой решетки 0,97
L1=50 мм
Высота рабочей решетки первой не регулируемой ступени.
L2=L1+D1+D2 мм. Значения D1 – внутренней, D2 – внешней перекыш принимаем из таблиц. D1=1мм, D2=2,5 мм
L2=53,5 мм.
Построим треугольники скоростей для 1 не регулируемой ступени.
Масштаб: в 1 мм – 5 м/с
Построив входной треугольник, находим угол входа на рабочие
лопатки b1=23°, и W1=180 м/с.
Для построения выходного треугольника, найдем выходной угол
рабочих лопаток
b2=b1-(2°¸4°), b2=20°
Располагаемый теплоперепад на рабочих лопатках:
h02=r´h0=0,2´60=12 кДж/кг
Найдем энергию торможения пара перед рабочими лопатками:
hw1=hw1²/2000=180²/2000=16,2 кДж/кг
Найдем полное теплопадение на рабочих лопатках:
h02*=h02+hw1=12+16,2=28,2 кДж/кг
Относительная скорость на выходе из рабочих лопаток.
W2= 44,72´y´Öh02=223 м/с
где y=0,94
из полученных данных строим выходной треугольник.
По треугольнику находим угол a2=50°;
абсолютную скорость пара за ступенью
С2=100м/с.
Полученные данные заносим в таблицу 1.
Ориентировочный расчет последней ступени.
Определяем диаметр последней ступени, высоту сопловой и рабочей лопаток, и теплового перепада.
1) Диаметр последней ступени
dz=ÖDz´V2z´l/p´C2z´sina
где Dz – расход пара через ЧНД, равен 211 кг/с
V2t – удельный объем пара за рабочей решеткой последней ступени,
равен 39 м³/кг
С2z – абсолютная скорость пара за последней ступенью.
принимаем 240 м/с
l - отношение диаметра к длине рабочей лопатки.
l=dz/L2z l=2,43;
a2z – угол потока абсолютной скорости; принимаем 90°
Подставив приведенные значения, получим:
dz=5,7 м, так как в данной турбине ЧНД выполнена двухпоточной,
dz=dz/2=5,7/2=2,39м.
Определим окружную скорость.
Uz=dz´p´/60 = 2,39´3,14´3000/60 = 375,23 м/с
где n – число оборотов турбины, n=3000
Угол выхода b2 находим по формуле:
b2=arcsin´C2z´sina1z =36°
W2z
где a1z=33°
W2z находим по треугольнику скоростей W2z=440 м/с
масштаб: в 1мм 5м/с
3) Определим длину рабочей лопатки.
L2z=dz/l=2,39/2,43=0,983 м.
4) Определяем скорость пара на выходе из сопел.
С1=Uz´(U/Сф) = 375,32´0,7 =263 м/с.
Где (U/Сф) – нивыгоднейшее соотношение скоростей для последней ступени. Для реактивных ступеней принимаем 0,7.
5) Определим угол входа b1 по треугольникам скоростей. b1=40°
6) Определяем теплоперепад в соплах последней ступени.
h0с=1/2000[(C1/j)²-mс´С2пр²] кДж/кг
Где j=0,95
mс для реактивной ступени равна единице.
C2пр=0,75´С2z = 240´0,75 = 180 м/с
Подставив имеющиеся данные получим:
h0с=22,1 кДж/кг
7) Определяем теплоперепад срабатываемый на рабочих лопатках.
h0л=1/2000[(W2/y)²-W1]
где y - скоростной коэффициент рабочих лопаток, y=0,95
W1 находим по треугольнику скоростей, W1= 210 м/с.
Подставив имеющиеся данные получим:
h0л =85,2 кДж/кг
8) Определяем теплоперепад последней ступени.
h0z=h0с+h0л= 22,1+85,2= 107,3 кДж/кг
9) Определяем степень реакции ступени:
r=h0л/h0и=85,2/107,3=0,79.
Таблица 1.
4. Определение показателей тепловой экономичности при номинальном режиме.
4.1 Определение удельного расхода пара.
Мерой технического совершенства конденсационного турбоагрегата в первом приближении может служить удельный расход пара d0
d0= D0 = 1500000 =3 кг/кВт *ч
Wэ 500000
где D0 расход пара на турбину в кг/ч; Wэ электрическая мощность турбоагрегата, в кВт/ч.
... (2.61) Фактическое значение удельных расходов условного топлива на отпуск электроэнергии и тепла определяются по формулам: (2.62) (2.63) 2.12 Выбор основного оборудования ГРЭС На основании заданных величин в качестве основного оборудования, в целях обеспечения надежности работы станции, выбираем пять моднрнизированных ...
... , созданы системы водохранилищ на Оке, Волге и других реках. Также разведаны запасы нефти, но до добычи еще далеко. Можно сказать, что энергетические ресурсы ЦЭР имеют местное значение, и электроэнергетика не является отраслью его рыночной специализации. В структуре электроэнергетики Центрального экономического района преобладают крупные тепловые электростанции. Конаковская и Костромская ГРЭС, ...
... есть угроза жизнеобеспечению. Решение этой проблемы – одна из основных задач.[13] ГЛАВА 2. МАКРО АНАЛИЗ КОНЦЕПЦИИ СТРАТЕГИИ НА 2003 – 2008 гг. «5+5» 2.1. Основные цели и задачи реструктуризации РАО «ЕЭС России» Основными целями реформирования электроэнергетической отрасли являются: - повышение эффективности предприятий электроэнергетики; - создание условий для развития отрасли на основе ...
... выбора направления развития ядерной энергетики на следующем этапе (условно 1980—2000), когда АЭС станет одним из оси. производителей электроэнергии. ЭНЕРГИЯ СОЛНЦА В последнее время интерес к проблеме использования солнечной энергии резко возрос, и хотя этот источник также относится к возобновляемым, внимание, уделяемое ему во всем мире, заставляет нас рассмотреть его возможности ...
0 комментариев