5.3. Карбоволокниты с углеродной матрицей.
Коксованные материалы получают из обычных полимерных карбоволокнитов, подвергнутых пиролизу в инертной или восстановительной атмосфере. При температуре 800–1500°С образуются карбонизированные, при 2500–3000°С графитированные карбоволокниты. Для получения пироуглеродных материалов упрочнитель выкладывается по форме изделия и помещается в печь, в которую пропускается газообразный углеводород (метан). При определенном режиме (температуре 1100°С и остаточном давлении 2660 Па) метан разлагается и образующийся пиролитический углерод осаждается на волокнах упрочнителя, связывая их.
Образующийся при пиролизе связующего кокс имеет высокую прочность сцепления с углеродным волокном. В связи с этим композиционный материал обладает высокими механическими и абляционными свойствами, стойкостью к термическому удару.
Карбоволокнит с углеродной матрицей типа КУП-ВМ по значениям прочности и ударной вязкости в 5–10 раз превосходит специальные графиты; при нагреве в инертной атмосфере и вакууме он сохраняет прочность до 2200°С, на воздухе окисляется при 450°С и требует защитного покрытия. Коэффициент трения одного карбоволокнита с углеродной матрицей по другому высок (0,35–0,45), а износ мал (0,7–1 мкм на торможение).
Полимерные карбоволокниты используют в судо- и автомобилестроении (кузова гоночных машин, шасси, гребные винты); из них изготовляют подшипники, панели отопления, спортивный инвентарь, части ЭВМ. Высокомодульные карбоволокниты применяют для изготовления деталей авиационной техники, аппаратуры для химической промышленности, в рентгеновском оборудовании и др.
Карбоволокниты с углеродной матрицей заменяют различные типы графитов. Они применяются для тепловой защиты, дисков авиационных тормозов, химически стойкой аппаратуры.
Физико-механические свойства карбоволокнитов приведены в табл.2.
5.4. Бороволокниты
Бороволокниты представляют собой композиции из полимерного связующего и упрочнителя — борных волокон.
Бороволокниты отличаются высокой прочностью при сжатии, сдвиге и срезе, низкой ползучестью, высокими твердостью и модулем упругости, теплопроводностью и электропроводимостью. Ячеистая микроструктура борных волокон обеспечивает высокую прочность при сдвиге на границе раздела с матрицей.
Помимо непрерывного борного волокна применяют комплексные боростеклониты, в которых несколько параллельных борных волокон оплетаются стеклонитью, придающей формоустойчивость. Применение боростеклонитей облегчает технологический процесс изготовления материала.
В качестве матриц для получения бороволокнитов используют модифицированные эпоксидные и полиимидные связующие. Бороволокниты КМБ-1 и КМБ-1к предназначены для длительной работы при температуре 200°С; КМБ-3 и КМБ-Зк не требуют высокого давления при переработке и могут работать при температуре не свыше 100°С; КМБ-2к работоспособен при 300°С.
Влияние на механические свойства бороволокнита содержания волокна приведено на рис.12, а влияние различных матриц – на рис.13.
Рис.12. Зависимость механических свойств бороволокнита КМБ-1 от содержания борного волокна: Е – модуль упругости;
σИЗГ – предел прочности при изгибе; G – модуль сдвига; τВ – предел
прочности при сдвиге
Рис.13. Зависимость разрушающего напряжения при изгибе бороволокнитов на различных связующих от температуры: 1, 2 – эпоксидное; 3 – полиимидное; 4 – кремнийорганическое связующее
Поскольку борные волокна являются полупроводниками, то бороволокниты обладают повышенной теплопроводностью и электропроводимостью: λ=43 кДж/(м∙К); α=4∙10-6 С-1 (вдоль волокон); ρV=1,94∙107 Ом∙см; е=12,6ч20,5 (при частоте тока 107 Гц); tgδ=0,02ч0,051 (при частоте тока 107 Гц). Для бороволокнитов прочность при сжатии в 2–2,5 раза больше, чем для карбоволокнитов.Физико-механические свойства бороволокнитов приведены в табл.2.
Изделия из бороволокнитов применяют в авиационной и космической технике (профили, панели, роторы и лопатки компрессоров, лопасти винтов и трансмиссионные валы вертолетов и т.д.).
5.5. Органоволокниты
Органоволокниты представляют собой композиционные материалы, состоящие из полимерного связующего и упрочнителей (наполнителей) в виде синтетических волокон. Такие материалы обладают малой массой, сравнительно высокими удельной прочностью и жесткостью, стабильны при действии знакопеременных нагрузок и резкой смене температуры. Для синтетических волокон потери прочности при текстильной переработке небольшие; они малочувствительны к повреждениям.
В органоволокнитах значения модуля упругости и температурных коэффициентов линейного расширения упрочнителя и связующего близки. Происходит диффузия компонентов связующего в волокно и химическое взаимодействие между ними. Структура материала бездефектна. Пористость не превышает 1–3% (в других материалах 10–20%). Отсюда стабильность механических свойств органоволокнитов при резком перепаде температур, действии ударных и циклических нагрузок. Ударная вязкость высокая (400–700 кДж/м2). Недостатком этих материалов является сравнительно низкая прочность при сжатии и высокая ползучесть (особенно для эластичных волокон).
Органоволокниты устойчивы в агрессивных средах и во влажном тропическом климате; диэлектрические свойства высокие, а теплопроводность низкая. Большинство органоволокнитов может длительно работать при температуре 100–150°С, а на основе полиимидного связующего и полиоксадиазольных волокон – при 200–300°С.
В комбинированных материалах наряду с синтетическими волокнами применяют минеральные (стеклянные, карбоволокна и бороволокна). Такие материалы обладают большей прочностью и жесткостью.
Органоволокниты применяют в качестве изоляционного и конструкционного материала в электрорадиоиромышленности, авиационной технике, автостроении; из них изготовляют трубы, емкости для реактивов, покрытия корпусов судов и др.
Литература
Гуляев А.П. «Металловедение», М.: 1968.
Дальский А.М. «Технология конструкционных материалов», М.: 1985.
Куманин И.Б. «Литейное производство», М.: 1971.
Лахтин Ю.М. «Материаловедение», М.: 1990.
Семенов «Ковка и объемная штамповка», М.: 1972.
Материал | Плотность, т/м3 | Предел прочности, МПа | Модуль упругости, ГПа | Удельная жесткость Е/ρ, 103 км | Относительное удлинение при разрыве, % | Удельная проч-ность σ/ρ, км | Ударная вязкость, кДж/м2 | Сопр. усталости на базе 107 циклов, МПа | Длит. прочн. при изгибе за 1000 ч, МПА | |||||
при рас-тяжении | при сжатии | при изгибе | при сдвиге | при рас-тяжении | при изгибе | при сдвиге | ||||||||
Карбоволокниты: КМУ-1л КМУ-1у КМУ-1в КМУ-2в Бороволокниты: КМБ-1м КМБ-1к КМБ-2к КМБ-3к Карбоволокнит с углер. матрицей КУП-ВМ Органоволокниты: с эластичным волокном с жестким волокном | 1,4 1,47 1,55 1,3 2,1 2,0 2,0 2,0 1,35 1,15–1,3 1,2–1,4 | 650 1020 1000 380 1300 900 1000 1300 200 100– 190 650–700 | 350 400 540 – 1160 920 1250 1500 260 75 180–200 | 800 1100 1200 – 1750 1250 1550 1450 640 100–180 400–450 | 25 30 45 – 60 48 60 75 42 – – | 120 180 180 81 270 214 260 260 160 2,5–8,0 35 | 100 145 160 – 250 223 215 238 165 – – | 2,80 3,50 5,35 – 9,8 7,0 6,8 7,2 – – – | 8,6 12,2 11,5 6,2 – 10,7 13,0 12,5 – 0,22–0,6 2,7 | 0,5 0,6 0,6 0,4 0,3–0,5 0,3–0,4 0,3–0,4 0,3–0,4 – 10–20 2–5 | 46 70 65 30 – 43 50 65 – 8–15 50 | 50 44 84 – 90 78 110 110 12 500–600 – | 300 500 350 – 400 350 400 420 240 – – | 480 880 900 – 1370 1220 1200 1300 – – – |
... только внутренние, они мелкие, возникают при получении порошка за счет усадки, газообразования, механического воздействия(трещины) и др. Химические свойства порошков. К химическим свойствам металлических порошков относятся их химический состав, газонасыщенность, пирофорность, токсичность, взрывоопасность. Химический состав оценивают содержанием основных компонентов, примесей или загрязнений и ...
... способность стали к вытяжке. Поэтому для холодной штамповки более широко используют холоднокатаные кипящие стали 08кп, 08Фкп (0.02-0.04% V) и 08Ю (0.02-0.07% Al). Конструкционные (машиностроительные) цементируемые (нитроцементуемые) легированные стали Для изготовления деталей, упрочняемых цементацией, применяют низкоуглеродистые (0.15-0.25% С) стали. Содержание легирующих элементов в сталях ...
... способность стали к вытяжке. Поэтому для холодной штамповки более широко используют холоднокатаные кипящие стали 08кп, 08Фкп (0.02-0.04% V) и 08Ю (0.02-0.07% Al). Конструкционные (машиностроительные) цементируемые (нитроцементуемые) легированные стали Для изготовления деталей, упрочняемых цементацией, применяют низкоуглеродистые (0.15-0.25% С) стали. Содержание легирующих элементов ...
... неорганических веществ в тонкоизмельченном состоянии. Детали и сборочные единицы широко применяют в электронике, автоматике, телемеханике, вычислительной технике, квантовой электронике и других отраслях приборостроения благодаря рядц замечательных свойств; морозо-и нагревостойкости, высокой механической прочности, твердости, малым диэлектрическим потерям, инертности к раду агрессивных сред, ...
0 комментариев