Метод приведения Он используется для определения результа­тов косвенного измерения и его погрешности при наличии корреля­ции между погрешностями измерений аргументов. Метод можно также применять при неизвестных распределениях погрешностей аргументов. Он предполагает наличие ряда согласованных результа­тов измерений аргументов Q11,Q,12,…,Q1m; Q21, Q22, …, Q2m; …, Qj1, QJ2, …, Qjm; …; QL1, QL2, …, QLm, полученных в процессе многократ­ных измерений. Согласованность результатов измерений означает либо одновременное их осуществление, либо то, что они выполнены над одним и тем же объектом и в одних и тех же условиях.

Метод основан на приведении отдельных значений косвенно изме­ряемой величины к ряду простых измерений. Получаемые сочетания отдельных аргументов подставляют в формулу (8.6) и вычисляют отдельные значения измеряемой величины Q: Q1, Q2, ..., Qj, ,QL.

Результат косвенного измерения и СКО его случайной по­грешности вычисляются по формулам


Доверительные границы случайной погрешности результата из­мерения рассчитываются по формуле где Т - коэффи­циент, зависящий от вида распределения отдельных значений оп­ределяемой величины и выбранной доверительной вероятности. При нормальном распределении отдельных значений измеряемой величины доверительные границы случайных погрешностей вы­числяются по методике для прямых многократных измерений, из­ложенной в ГОСТ 8.207-76.

Границы неисключенной систематической погрешности и до­верительные границы погрешности результата косвенного измере­ния определяются так же, как и в рассмотренных выше случаях.


Глава 12. МЕТРОЛОГИЧЕСКИЕ

ХАРАКТЕРИСТИКИ СРЕДСТВ ИЗМЕРЕНИЙ И ИХ

НОРМИРОВАНИЕ


При использовании СИ принципиально важно знать степень соответствия информации о измеряемой величине, содержащейся в выходном сигнале, ее истинному значению. С этой целью для каж­дого СИ вводятся и нормируются определенные метрологические характеристики (MX). Метрологические характеристики — это характеристики свойств средства измерений, оказывающие влия­ние на результат измерения и его погрешности. Характеристики, устанавливаемые нормативно-техническими документами, называ­ются нормируемыми, а определяемые экспериментально — действи­тельными. Номенклатура MX, правила выбора комплексов норми­руемых MX для средств измерений и способы их нормирования определяются стандартом ГОСТ 8.009-84 "ГСИ. Нормируемые мет­рологические характеристики средств измерений". Подробные ком­ментарии к этому документу приведены в [58].

Метрологические характеристики СИ позволяют:

• определять результаты измерений и рассчитывать оценки ха­рактеристик инструментальной составляющей погрешности изме­рения в реальных условиях применения СИ;

• рассчитывать MX каналов измерительных систем, состоящих из ряда средств измерений с известными MX;

• производить оптимальный выбор СИ, обеспечивающих требуе­мое качество измерений при известных условиях их применения;

• сравнивать СИ различных типов с учетом условий примене­ния.

При разработке принципов выбора и нормирования средств из­мерений необходимо придерживаться ряда положений, изложен­ных ниже.

1. Основным условием возможности решения всех перечислен­ных задач является наличие однозначной связи между нормиро­ванными MX и инструментальными погрешностями. Эта связь устанавливается посредством математической модели инструментальной составляющей погрешности, в которой нормируемые MX долж­ны быть аргументами. При этом важно, чтобы номенклатура MX и способы их выражения были оптимальны. Опыт эксплуатации раз­личных СИ показывает, что целесообразно нормировать комплекс MX, который, с одной стороны, не должен быть очень большим, а с другой — каждая нормируемая MX должна отражать конкретные свойства СИ и при необходимости может быть проконтролирована.

2. Нормирование MX средств измерений должно производиться исходя из единых теоретических предпосылок. Это связано с тем, что в измерительных процессах могут участвовать СИ, построен­ные на различных принципах.

3. Нормируемые MX должны быть выражены в такой форме, чтобы с их помощью можно было обоснованно решать практически любые измерительные задачи и одновременно достаточно просто проводить контроль СИ на соответствие этим характеристикам.

4. Нормируемые MX должны обеспечивать возможность стати­стического объединения, суммирования составляющих инструмен­тальной погрешности измерений. В общем случае она может быть определена как сумма (объединение) следующих составляющих погрешности:

(t), обусловленной отличием действительной функции пре­образования в нормальных условиях от номинальной, приписан­ной соответствующими документами данному типу СИ. Эта погреш­ность называется основной;

, обусловленной реакцией СИ на изменение внешних влияю­щих величин и неинформативных параметров входного сигнала относительно их номинальных значений. Эта погрешность называ­ется дополнительной;

обусловленной реакцией СИ на скорость (частоту) изме­нения входного сигнала. Эта составляющая, называемая динамиче­ской погрешностью, зависит и от динамических свойств средств измерений, и от частотного спектра входного сигнала;

, обусловленной взаимодействием СИ с объектом измере­ний или с другими СИ, включенным последовательно с ним в изме­рительную систему. Эта погрешность зависит от характеристик и параметров входной цепи СИ и выходной цепи объекта измерений.

Таким образом, инструментальную составляющую погрешности СИ можно представить в виде




где * — символ статистического объединения составляющих.

Первые две составляющие представляют собой статическую по­грешность СИ, а третья — динамическую. Из них только основная погрешность определяется свойствами СИ. Дополнительная и ди­намическая погрешности зависят как от свойств самого СИ, так и от некоторых других причин (внешних условий, параметров изме­рительного сигнала и др.).

Требования к универсальности и простоте статистического объ­единения составляющих инструментальной погрешности обуслав­ливают необходимость их статистической независимости — некор­релированности. Однако предположение о независимости этих составляющих не всегда верно.

Выделение динамической погрешности СИ как суммируемой составляющей допустимо только в частном, но весьма распростра­ненном случае, когда СИ можно считать линейным динамическим звеном и когда погрешность является весьма малой величиной по сравнению с выходным сигналом. Динамическое звено считается линейным, если оно описывается линейными дифференциальными уравнениями с постоянными коэффициентами. Для СИ, являющихся существенно нелинейными звеньями, выделение в отдельно сумми­руемые составляющие статической и динамической погрешностей недопустимо.

5. Нормируемые MX должны быть инвариантны к условиям применения и режиму работы СИ и отражать только его свойства. Выбор MX необходимо осуществлять так, чтобы пользователь имел возможность рассчитывать по ним характеристики СИ в реальных условиях эксплуатации.

6. Нормируемые MX, приводимые в нормативно-технической документации, отражают свойства не отдельно взятого экземпляра СИ, а всей совокупности СИ данного типа, т.е. являются номи­нальными. Под типом понимается совокупность СИ, имеющих оди­наковое назначение, схему и конструкцию и удовлетворяющих од­ним и тем же требованиям, регламентированным в технических условиях. Метрологические характеристики отдельного СИ данно­го типа могут быть любыми в пределах области значений номи­нальных MX. Отсюда следует, что MX средства измерений данного

типа должна описываться как нестационарный случайный процесс. Математически строгий учет данного обстоятельства требует нор­мирования не только пределов MX как случайных величин, но и их временной зависимости (т.е. автокорреляционных функций). Это приведет к чрезвычайно сложной системе нормирования и практи­ческой невозможности контроля MX, поскольку при этом он дол­жен был бы осуществляться в строго определенные промежутки времени. Вследствие этого принята упрощенная система нормиро­вания, предусматривающая разумный компромисс между матема­тической строгостью и необходимой практической простотой. В принятой системе низкочастотные изменения случайных составляю­щих погрешности, период которых соизмерим с длительностью меж­поверочного интервала, при нормировании MX не учитываются. Они определяют показатели надежности СИ, обуславливают выбор рациональных межповерочных интервалов и других аналогичных характеристик. Высокочастотные изменения случайных составляю­щих погрешности, интервалы корреляции которых соизмеримы с длительностью процесса измерения, необходимо учитывать путем нормирования, например, их автокорреляционых функций.

Перечень нормируемых MX делится на шесть основных групп

(рис.12.1), которые и рассматриваются далее.



Информация о работе «Метрология»
Раздел: Технология
Количество знаков с пробелами: 37584
Количество таблиц: 0
Количество изображений: 65

Похожие работы

Скачать
37376
0
0

... і оборони України регламентуються окремим положенням, яке затверджується Кабінетом Міністрів України за поданням Міністерства оборони України і ЦОВМ та не повинно суперечити цьому Закону. Особливості метрологічної діяльності у сфері наукових досліджень і розробок в Україні регламентуються окремим положенням, яке затверджується Кабінетом Міністрів України за поданням Національної академії наук ...

Скачать
96282
0
40

... измерений на рабочем месте. Чтобы эти службы эффективно выполняли стоящие перед ними задачи необходимо научное, техническое и правовое обеспечение их деятельности. Научной основой МО является метрология - наука об измерениях. Техническую основу МО составляют: система государственных эталонов единиц ФВ; система передачи размеров единиц ФВ от эталонов всем средствам измерений с помощью образцовых ...

Скачать
22473
0
1

... , оформлення та розгляд матеріалів за результатами державних випробувань визначаються відповідним ДСТУ. Державна метрологічна атестація, повірка та калібрування засобів вимірювальної техніки Державна метрологічна атестація засобів вимірювальної техніки Засоби вимірювальної техніки, які не підлягають державним приймальним випробуванням і на які не поширюється державний метрологічний нагляд, ...

Скачать
442965
6
19

... ГОСТ Р. Техническими регламентами II уровня являются: государственные и межгосударственные стандарты (далее — государственные стандарты), содержащие обязательные требования; правила по стандартизации, метрологии, сертификации; общероссийские классификаторы. Нормативные документы III уровня представлены стандартами, сфера применения которых ограничена, определенной отраслью народного хозяйства ...

0 комментариев


Наверх