3.2. КЛАССЫ ТОЧНОСТИ СРЕДСТВ ИЗМЕРЕНИЯ
Для обеспечения единства измерений и взаимозаменяемости средств измерений характеристики их метрологических свойств (метрологические характеристики) нормируются и регламентируются стандартами. Номенклатура метрологических характеристик и полнота, с которой они должны описывать те или иные свойства средств измерений, зависят от назначения средств измерений, условий эксплуатации, режима работы и многих других факторов. В полном перечне метрологических характеристик можно выделить следующие их группы:
- градуировочные характеристики, определяющие соотношение между сигналами на входе и выходе средства измерений в статическом режиме. К ним относятся, например, номинальная статическая характеристика преобразования (градуировочная характеристика) прибора, номинальное значение меры, пределы измерения, цена деления шкалы, вид и параметры цифрового кода в цифровом приборе;
- показатели точности средства измерения, позволяющие оценить инструментальную составляющую погрешности результата измерения;
- динамические характеристики, отражающие инерционные свойства средств измерения и необходимые для оценивания динамических погрешностей измерений;
- функции влияния, отражающие зависимость метрологических характеристик средств измерения от воздействия влияющих величин или неинформативных параметров входного сигнала.
Неинформативным называется параметр входного сигнала, не связанный непосредственно с измеряемой величиной, но оказывающий влияние на результат измерения, например, частота переменного электрического тока при измерении его амплитуды.
Обычно метрологические характеристики нормируются раздельно для нормальных и рабочих условий применения средств измерений. Нормальными считаются такие условия, при которых изменением метрологических характеристик под воздействием влияющих величин можно пренебречь. Так, для многих типов средств измерений нормальными условиями применения являются: температура (20±5)°С, атмосферное давление 84... 106 кПа, относительная влажность 30... 80%. Рабочие условия отличаются от нормальных более широкими диапазонами влияющих величин.
Учет всех нормируемых метрологических характеристик средства измерений при оценивании погрешности результата измерений, как видно, сложная и трудоемкая процедура, оправданная при измерениях повышенной точности. При измерениях на производстве, в обиходе такая точность не всегда нужна. В то же время, определенная информация о возможной инструментальной составляющей погрешности измерения необходима. Такая информация дается указанием класса точности средства измерений.
Под классом точности понимают обобщенную характеристику точности средств измерений данного типа, определяемую пределами допускаемой основной погрешности. Классы точности присваивают средствам измерений при их разработке на основании исследований и испытаний представительной партии средств измерения данного типа. При этом пределы допускаемых погрешностей нормируют и выражают в форме абсолютных, приведенных или относительных погрешностей, в зависимости от характера изменения погрешностей в пределах диапазона измерений. Приведенной называется относительная погрешность, вычисленная в процентах от некоторого нормирующего значения. В качестве нормирующего обычно принимается конечное значение шкалы (верхний предел измерения для приборов с односторонней шкалой или сумма пределов — для приборов с нулем посредине).
Пределы допускаемой абсолютной погрешности устанавливают по формулам:
(3.4)
или
где х — значение измеряемой величины; а, b положительные числа, не зависящие от х.
положительные числа, не
Нормирование в соответствии с (3.5) означает, что в составе погрешности средства измерения присутствуют аддитивная и мультипликативная составляющие, например, для генератора низкой частоты ГЗ-36 = ±(0,03+2) Гц.
Пределы допускаемой приведенной основной погрешности определяют по формуле
где Хн — нормирующее значение, выраженное в тех же единицах, что и х; р — отвлеченное положительное число, выбираемое из стандартизованного ряда значений (1*10n; 1,5*10n; ...,5*10n; ...,где n - 1,0,-1,-2 и т.д.).
Для измерительных приборов с существенно неравномерной шкалой нормирующее значение устанавливают равным длине шкалы.
Пределы допускаемой относительной основной погрешности:
если установлена по формуле (3.4)
(3.7)
если А установлена по (3.5)
(3.8)
где q — отвлеченное положительное число, выбираемое из стандартизованного ряда значений; Хк — больший по модулю из пределов измерений (верхний предел измерения, или сумма пределов измерения для приборов с нулем посредине); с, d — положительные числа, выбираемые из стандартизованного ряда; х — показание прибора.
Пределы допускаемых дополнительных погрешностей, как правило, устанавливают в виде дольного значения предела допускаемой основной погрешности. Обозначение классов точности наносится на шкалы, щитки или корпуса приборов.
Классы точности средств измерений обозначаются условными знаками (буквами, цифрами). Для средств измерений, пределы допускаемой основной погрешности которых выражают в форме приведенной погрешности или относительной погрешности в соответствии с (3.6) и (3.7), классы точности обозначаются числами, равными этим пределам в процентах. Чтобы отличить относительную погрешность от приведенной, обозначение класса
точности в виде относительной погрешности обводят кружком . Если
погрешность нормирована в процентах от длины шкалы, то под обозначением класса ставится знак . Если погрешность нормирована формулой (3.8), то класс точности обозначается как с/d (например, 0,02 / 0,01).
Пример. На шкале амперметра с пределами измерения 0... 10 А нанесено обозначение класса точности 2,5. Это означает, что для данного прибора нормирована приведенная
погрешность. Подставляя в (3.6) Хn = 10А и р = 2,5 получим
Если бы обозначение класса точности было , то погрешность следовало бы
вычислить в процентах от измеренного значения. Так, при Iизм = 2А, погрешность прибо
ра не должна превышать .
... і оборони України регламентуються окремим положенням, яке затверджується Кабінетом Міністрів України за поданням Міністерства оборони України і ЦОВМ та не повинно суперечити цьому Закону. Особливості метрологічної діяльності у сфері наукових досліджень і розробок в Україні регламентуються окремим положенням, яке затверджується Кабінетом Міністрів України за поданням Національної академії наук ...
... измерений на рабочем месте. Чтобы эти службы эффективно выполняли стоящие перед ними задачи необходимо научное, техническое и правовое обеспечение их деятельности. Научной основой МО является метрология - наука об измерениях. Техническую основу МО составляют: система государственных эталонов единиц ФВ; система передачи размеров единиц ФВ от эталонов всем средствам измерений с помощью образцовых ...
... , оформлення та розгляд матеріалів за результатами державних випробувань визначаються відповідним ДСТУ. Державна метрологічна атестація, повірка та калібрування засобів вимірювальної техніки Державна метрологічна атестація засобів вимірювальної техніки Засоби вимірювальної техніки, які не підлягають державним приймальним випробуванням і на які не поширюється державний метрологічний нагляд, ...
... ГОСТ Р. Техническими регламентами II уровня являются: государственные и межгосударственные стандарты (далее — государственные стандарты), содержащие обязательные требования; правила по стандартизации, метрологии, сертификации; общероссийские классификаторы. Нормативные документы III уровня представлены стандартами, сфера применения которых ограничена, определенной отраслью народного хозяйства ...
0 комментариев