Порошковой металлургией называют область техники, охватывающую совокупность методов изготовления порошков металлов и металлоподобных соединений, полуфабрикатов и изделий из них или их смесей с неметаллическими порошками без расплавления основного компонента.
Из имеющихся разнообразных способов обработки металлов порошковая металлургия занимает особое место, так как позволяет получать не только изделия различных форм и назначений,но и создавать принципиально новые материалы, которые другим путем получить или очень трудно или невозможно. У таких материалов можно получить уникальные свойства, я ряде случаев существенно повышается экономические показатели производства. При этом способе практически в большинстве случаев коэффициент исполь-зования материала составляет около 100%.
Порошковая металлургия находит широчайшее применение для различных условий работы деталей изделий. Методами порошковой металлургии изготовляют изделия, имеющие специальные свойства: антифрикционные детали узлом трения приборов и машин (втулки, вкладыши, опорные шайбы и т.д.), конструкционные детали (шестерни, кулачки и др.), фрикционные детали (диски, колодки и др.), инструментальные материалы (резцы, пластины резцов, сверла и др.), электротехнические детали (контакты, магниты, ферриты, электрощетки и др.) для электронной и радиотехнической промышленности, композиционные (жаропрочные и др,)материалы.
Порошки металлов применяли и в древнейшие времена. Порошки меди, серебра и золота применяли в красках для декоративных целей в керамике, живописи во все известные времена. При раскопках найдены орудия из железа древних египтян (за 3000 лет до нашей эры), знаменитый памятник из железа в Дели относится и 300 году нашей эры. До 19 века не было известно способов получения высоких температур (около 1600-1800 С). Указанные предметы из железа были изготовлены кричным методом: сначала а горнах при температуре 1000 С восстановлением железной руды углем получали крицу(губку), которую затем многократно проковывали в нагретом состоянии, а завершали процесс нагревом в горне для уменьшения пористости. На Киевской Руси железо полу-чали за 1400 лет до новой эры.
С появлением доменного производства от крицы отказались и о порошковой металлургии забыли.
Заслуга возрождения порошковой металлургии и превращения ее в особый технологический метод обработки принадлежит русским ученым П.Г. Соболевскому и В.В. Любарскому, которые в 1826 г., за три года до работ англичанина Воллстана, разработали техно-логию прессования и спекания платинового порошка.
Типовая технология производства заготовки изделий методом порошковой металлургии включает четыре основные операции: 1) получение порошка исходного материала; 2)формование заготовок;
3) спекание и 4) окончательную обработку. каждая из указанных операций оказывает значительное влияние на формирование свойств готового изделия.
Производство металлических порошков и их свойства. В настоящее время используют большое количество методов производства металлических порошков, что позволяет варьировать их свойства, определяет качество и экономические показатели.
Условно различают два способа изготовления металлических порошков: 1) физико-механический; 2)химико-металлургический При физико-механическом способе изготовления порошков превращение исходного материала в порошок происходит путём ме-ханического измельчения я твердом или жидком состоянии без изменения химического состава исходного материала. К физико-механическим способам относят дробление и размол, распыление,грануляцию и обработку резанием измельчаемого материала. При химико-металлургическом способе изменяется химический составили агрегатное состояние исходного материала. Основными методами при химико-металлургическом производстве порошков являются:восстановление окислов, электролиз металлов, термическая диссоциация карбонильных соединений.
Механические методы получения порошков. Измельчение твердых материалов - уменьшение начальных размеров частиц путем разрушения их под действием внешних усилий.Различают измельчение дроблением, размолом или истиранием.Наиболее целесообразно применять механическое измельчение хрупких металлов и их сплавов таких, как кремний,сурьма, хром, марганец, ферросплавы, сплавы алюминия с магнием. Размол вязких пластичных металлов (медь,алюминий и др.) затруднен. В случае таких металлов наиболее целесообразно использование я качестве сырья отходов образующиеся при обработке металлов (стружка,обрезка и др.).
При измельчении комбинируются различные виды воздействия на материал статическое -сжатие и динамическое - удар, срез - истирание, первые два вида имеют место при получении крупных частиц, второй и третий - при тонком измельчении. При дроблении твердых тел затрачиваемая энергия выполняет работу упругого и пластического деформирования и разрушения, нагрева материалов, участвующих я процессе размельчения.
Для грубого размельчения используют щековые, валковые и
конусные дробилки и бегуны; при этом получают частицы размером
1---10 мм, которые являются исходным материалом для тонкого
измельчения, обеспечивающего производство требуемых металли-
ческих порошков. Исходным материалом для тонкого измельчения
может быть и стружка, получаемая при точении, сверлении, фре-
зеровании и других операциях обработки резанием; при резании
получают кусочки стружки размером 3...5 мм почти для любых ме-
таллов путем изменения режимов резания,углов резания и введе-
ния колебательных движений
Окончательный размол полученного материала проводится в шаровых вращающихся, вибрационных или планетарных центробежных, вихревых и молотковых мельницах. Шаровая мельница (рис. 1) - простейший аппарат,используется для получения относительно мелких порошков с размером частиц от нескольких единиц до десятков микрометров.
Рис1.Схемы движения шаров в мельнице:а-режим скольжения,б-режим перекатывания, в-режим свободного скольжения,г-режим критической скорости.
Рис2.схема вибрационной мельницы:1-корпус-барабан,2-вибратор вращения,3-спиральные
пружины,4-электродвигатель,5-упругая соединительная муфта.
В мельницу загружают размольные тела(стальные или твердосплавные шары) и измельчаемый материал.
При вращении барабана шары поднимаются вследствие трения на
некоторую высоту и поэтому возможно несколько режимов измель-
чения: 1) скольжения, 2) перекатывания, 3) свободного падения,
4) движения шаров при критической скорости вращения барабана.
В случае скольжения шаров по внутренней поверхности вращающегося барабана материал истирается между стенкой барабана и внешней поверхностью массы шаров, ведущей себя как единое целое. При увеличении частоты вращения шары поднимаются и скатываются по наклонной поверхности и измельчение происходит между поверхностями трущихся шаров. Рабочая поверхность истирания в этом случае во много роз больше и поэтому происходит более ин-тенсивное истирание материала, чем а первом случае. При большей частоте вращения шары поднимаются до наибольшей высоты и падая вниз (рис. 1,а), производят дробящее действие, дополняемое истиранием материала между перекатывающимися шарами. Это наиболее интенсивный размол. При дальнейшем увеличении частоты вращения шары вращаются вместе с барабаном мельницы, а измельчение при этом практически прекращается.
Интенсивность измельчения определяется свойствами материала, соотношением рабочих размеров - диаметра и длины барабана, соотношением между массой и размерами размольных тел и из-мельчаемого материала. При D:L=3...5 ( D - диаметр, L- длина барабана) преобладает дробящее действие, при D:L1000 C
Рис.4 Классификация существующих методов восстановления окислов железа.
Медные, никелевые и кобальтовые порошки легко получают
восстановлением окислов этих металлов, так как они обладают
низким сродством к кислороду. Сырьем для производства порошков
этих металлов служат либо окись меди Cu2O,CuO,закись никеля
NiO , окись - закись кобальта Co2O3,Co3O4, либо окалина от
прокaта проволоки, листов и т.д. Восстановление проводят в му-
фельных или в трубчатых печах водородом, диссоциированным ам-
миаком или конвертированным природным газом. Температура восс-
тановления сравнительно низка: меди - 400...500~С, никеля -
700”...750 С, кобальта - 520..570 С. Длительность процесса
восстановления 1...3 ч при толщине слоя окисла20..25 мм. После
восстановления получают губку, которая легко растирается в по-
рошок
Порошок вольфрама получают из вольфрамового ангидрида,яв-ляющегося продуктом разложения вольфрамовой кислоты Н2WO4 (прокаливание при 700...800 С) или паравольфрамата аммония 5(Na4)2O*12WO3*11H2O(разложение при 300 С и более). Восстановление проводят либо водородом при температуре 850..900 С, либо углеродом при температуре 1350..1550С в электропечах.
Этим методом (восстановления) получают порошки молибдена
титана, циркония, тантала, ниобия, легированных сталей и спла-
вов
ЭлектролизЭтот способ наиболее экономичен при производстве химически чистых порошков меди. Физическая сущность электролиза (рис.5) состоит в том, что при прохождении электрического тока водный раствор или расплав соли металла, выполняя роль электролита, резлагается, металл осаждается на катоде, где его ионы разряжаютсяМе+ne=Me Сам процесс электрохимического превращения происходит на границе электрод (анод или катод) - раствор. Источником ионов выделяемого металла служат как правило, анод, состоящий из этого металла, и электролит, содержащий его растворимое соединение. Такие металлы как никель, кобальт, цинк выделяются из любых растворимых в виде однородных плотных зернистых осадков. Серебро и кадмий осаждаются из простых растворов в форме разветвленных кристаллитов, а из растворов цианистых солей - в виде плотных осадков. Размеры частиц осаждаемого порошка зависят от плотности тока, наличия коллоидов и поверхностно активных веществ. Очень большое влияние на характер осадков оказывает чистота электролита, материал электрода и характер его обработки.
Производительность злектролиза оценивается на осно-
вании закона Фарадея по электрохимическому эквиваленту
q=cJT
где q - количество выделившегося на электроде порошка,Г., J - сила тока, А., Т - время, Ч., С - электрохимичесиий эквивалент.Количество выделившегося на электроде порошка всегда меньше теоретического из-за протекания точных процессов.
Карбонильный процессКарбонилы - это соединения металлов с окисью углерода Me(CO)C, обладающие невысокой температурой образования и разложения. Процесс получения порошков по этому методу состоит из двух главных этапов:
получение карбонила из исходного соединения
MeаXb+cCO=bX+Mea(CO)c,
образование металлического порошка
Меа(СО)с= аМе+сСО
Основным требованием к таким соединениям является их легко-летучесть и небольшие температуры образования и термического разложения (кипения или возгонки). На первой операции - синтеза карбонила - отделение карбонила от ненужного вещества Х достигается благодаря летучести карбонила. На втором этапе происходит диссоциация (разложение) карбонила пут м его нагрева. При этом возникающий газ СО может быть использован для образования новых порций карбонилов. Для синтеза карбонилов используют металлсодержащее сырье : стружку, обрезки, металлическую губку и т.п. Карбонильные Порошки содержат примеси углерода, азота, кислорода (1...3%). Очистку порошка производят путем нагрева в сухом водороде или в вакууме до температуры 400...600 С, Этим методом получают порошки железа, никеля, кобальта, хрома, молибдена, вольфрама.
Свойства порошков. Свойство металлических порошков характе-ризуются химическими, физическими и технологическими свойствами. Химические свойства металлического порошка зависят от химического состава,который зависит от метода получения порошка и химического состава исходных материалов. Содержание основного металла в порошках составляет 98...99%. При изготовлении изделий с особыми свойствами, например магнитными, применяют более чистые порошки. Допустимое количестве примесей в порошке определяется допустимым их количеством в готовой продукции. Исключение сделано для окислов железа, меди, никеля, вольфрама и некоторых других,которые при нагреве в присутствии восстановления легко образуют активные атомы металла, улучшающие спекаемость порошков. Содержание таких окислов в порошке может составлять 1...10%. В металлических порошках содержится значительное количество газов (кислород, водород, азот и др.), как адсорбированных на поверхности, так и попавших внутрь частиц в процессе изготовления или при последующей обработке, Газовые пленки на поверхности частиц порошка образуются самопроизвольно из-за ненасыщенности полей силовых в поверхностных слоях. С уменьшением частиц порошка увеличивается адсорбция газов этими частицами.
При восстановлении химических соединений часть газов - восстановителей и газообразных продуктов реакции не успевает выйти наружу и находится либо в растворенном состоянии,либо в виде пузырей. Электролитические порошки содержат водород, вы-деляющийся на катоде одновременно с осаждением на нем металла. В карбонильных порошках присутствуют растворенные кислород, окись и двуокись углерода, а в распыленных порошках - газы, механически захваченные внутрь частиц.
Большое количество газов увеличивает хрупкость порошков и затрудняет прессование. Интенсивное выделение газов из спрессованной заготовки при спекании может привести к растрескиванию изделий. Поэтому перед прессованием или в его процессе применяют вакуумирование порошка, обеспечивающее удаление зна-чительного количества газов.
При работе с порошками учитывают их токсичность и пирофорность. Практически все порошки оказывают вредное воздействие на организм человека однако и компактном виде (в виде мелких частичек порошка) большинство металлов безвредно. Пирофорность, т.е. способность к самовозгоранию при соприкосновении с воздухом, может привести к воспламенению порошка и даже взрыву. Поэтому при работе с порошками строго соблюдают специальные меры безопасности. Физические свойства частиц характеризуют; форма, размеры и гранулометрический состав,удельная поверхность, плотность и микротвердость.
Форма частиц.В зависимости от метода изготовления порошка
получают соответствующую форму частиц: сферическая - при кар-
бонильном способе в распылении, губчатая - при восстановлении,
осколочная - при измельчении в шаровых мельницах, тарельчатая
при вихревом измельчении, дендритная - при электролизе,каплевидная - при распылении. Эта форма частиц может несколько изменяться при последующей обработке порошка (размол, отжиг, грануляция). Контроль формы частиц выполняют на микроскопе. Форма частиц значительно влияет на плотность, прочность и однородность свойств прессованного изделия. Размер частиц и гранулометрический состав. Значительная часть порошков представляет собой смесь частиц порошка размером от долей микрометра до десятых долей миллиметра.Самый широкий диапазон размеров частиц у порошков полученных восстановлением и электролизом. Количественное соотношение объемов частиц различных размеров к общему объему порошка называют гранулометрическим составом.
Удельная поверхность - это сумма наружных поверхностей всех частиц,имеющихся в единице объема или массы порошка. Для металлических порошков характерна величина удельной поверхности от 0.01 до 1 м2/г (у отдельных порошков - 4 м2/г у вольфра-ма, 20 м2/г у карбонильного никеля) . Удельная поверхность по-рошка зависит от метода получения его и значительно влияет не прессование и спекание.
Плотность. Действительная плотность порошковой частицы, носящая название пикнометрической, в значительной мере зависит от наличия примесей закрытых пор, дефектов кристаллической решетки и других причин и отличается от теоретической.Плотность определяют в приборе - пикнометре, представляющем собой колбочку определенного обьема и заполняемую сначала на 2/3 объема порошком и после взвешивания дозаполняют жидкостью, смачивающей порошок и химически инертной к нему. Затем снова взвешивают порошок с жидкостью. И по результатам взвешиваний находят массу порошка в жидкости и занимаемый им объем. Деление массы на объем позволяет вычислить пикнометрическую плотность порошка.Наибольшее отклонение плотности порошковых частиц от теоретической плотности наблюдают у восстановленных порошков из-за наличия остаточных окислов, микропор, полостей.
Микротвердость порошковой частицы характеризует ее способность к деформированию. Способность к деформированию в значительной степени зависит от содержания примесей в порошковой частице и дефектов кристаллической решетки. Для измерения микротвердости в шлифованную поверхность частицы вдавливают алмазную пирамиду с углом при вершине 136 под действием нагрузки порядка 0,5... 200г. Измерение выполняют на приборах для измерения микротвердости ПМТ-2 и ПМТ-З.
Технологические свойства порошка определяют: насыпная плотность, текучесть, прессуемость и формуемость.
Насыпная плотность - это масса единицы объема порошка при свободном заполнении объема.
Текучесть порошка характеризует скорость заполнения единицы объема и определяется массой порошка высыпавшегося через отверстие заданного диаметра в единицу времени. От текучести порошка зависит скорость заполнения инструмента и производительность при прессовании. Текучесть порошка обычно уменьшается с увеличением удельной поверхности и шероховатости частичек порошка и усложнением их формы. Последнее обстоятельство затрудняет относительное перемещение частиц .
Влажность также значительно уменьшает текучесть порошка.
Прессуемость и формуемость. Под прессуемостью порошка понимают свойство порошка приобретать при прессовании определенную плотность в зависимости от давления, а под формуе-мостью - свойство порошка сохранять заданную форму, полученную после уплотнения при минимальном давлении. Прессуемость в основном зависит от пластичности частиц порошка, а формуемость - от формы и состояния поверхности частиц. Чем выше насыпная массе порошка , тем хуже , в большинстве случаев , формуемость и лучше прессуемость. Количественно прессуемость определяется плотностью спрессованного брикета, формуемость оценивают качественно, по внешнему виду спрессованного брикета, или количественно - величиной давления, при котором получают неосыпающийся, прочный брикет.
Формование металлических порошков.
Целью формования порошка является придание заготовкам изпорошка формы,размеров, плотности и механической прочности, необходимых для последующего изготовления изделий. Формование включает следующиеоперации: отжиг, классификацию, приготовле-ние смеси, дозирование и формование.
Отжиг порошков применяют с целью повышения их пластичности и прессуемости за счет восстановления остаточных окислов и снятия наклепа. Нагрев осуществляют в защитной среде (восста-новительной, инертной или вакууме) при температуре 0,4...0,6 абсолютной температуры плавления металла порошка. Наиболее часто отжигают порошки полученные механическим измельчением, электролизом и разложением карбонилов.
Классификация порошков - это процесс разделения порошков по величине частиц. Порошки с различной величиной частиц используют для составления смеси, содержащей требуемый процент каж-дого размера. Классификация частиц размером более 40 мкм производят в проволочных ситах. Если свободный просев затруднен, то применяют протирочные сита. Более мелкие порошки классифи-цируют на воздушных сепараторах.
Приготовление смесей. В производстве для изготовления изделий используют смеси порошков разных металлов.Смешивание порошков есть одна из важных операций и задачей ее является обеспечение однородности смеси,так как от этого зависят конечные свойстваизделий. Наиболее часто применяют механическое смешивание компонентов в шаровых мельницах и смесителях. Соотношение шихты и шаров по массе 1:1. Смешивание сопровождается измельчением компонентов. Смешивание без измельчения прово дят в барабанных, шнековых, лопастных, центробежных, планетарных, конусных смесителях и установках непрерывного действия.
Равномерное и быстрое распределение частиц порошков в объеме смеси достигается при близкой по абсолютной величине плотности смешиваемых компонентов.При большой разнице абсолютной величины плотностей наступает расслоение компонентов .В этом случае полезно применять раздельную загрузку компонентов по частям: сначала более легкие с каким-либо более тяжелым , затем остальные компоненты.Смешивание всегда лучше происходит в жидкой среде, что не всегда экономически целесообразно из-за усложнения технологического процесса.
При приготовлении шихты некоторых металлических порошков высокой прочности ( вольфрама , карбидов металлов) для повышения формуемости в смесь добавляют пластификаторы - вещества смачивающие поверхность частиц. Пластификаторы должны удовлетворять требованиям: обладать высокой смачивающей возмож-ностью,выгорать при нагреве без остатка , легко растворяться в органических растворителях .Раствор пластификатора обычно заливают в перемешиваемый порошок, затем смесь сушат для удаления растворителя.Высушенную смесь просеивают через сито.
Дозирование - это процесс отделения определенных объемов смеси порошка.Различают объемное дозирование и дозирование по массе.Объемное дозирование используют при автоматизированном формовании изделий. Дозирование по массе наиболее точный способ, этот способ обеспечивает одинаковую плотность формования заготовок.
Для формования изделий из порошков применяют следующие способы: прессование в стальной прессформе, изостатическое прессование, прокатку порошков, мундштучное прессование , шли-керное формование,динамическое прессование.
Прессование в стальной прессформеПри прессовании, происходящем в закрытом объеме (рис.6) воз-никает сцепление частиц и получают заготовку требуемых формы и размеров. Такое изменение объема происходит в результате смеще-ния и деформации отдельных частиц и связано с заполнением пустот между частицами порошка и заклинивания - механического сцепления частиц. У пластичных материалов деформация возникает вначале у приграничных контактных участков малой площади под действием огромных напряжений, а затем распространяется вглубь частиц.
Рис.6 Схема прессования в прес- Рис. 7 Кривая идеального процесса уплотнения.
сформе ( 1-матрица, 2-пуансон,
3- нижний пуансон, 4- порошек)
и схема распределения давления по высоте.
У хрупких материалов деформация проявляется в разруше-нии выступов частиц. Кривая процесса уплотнения частиц порошка (рис.7) имеет три характерных участка. Наиболее интенсивно плотность нарастает на участке A при относительно свободном перемещении частиц, занимающих пустоты. После этого заполнения пустот возникает горизонтальный участок B кривой, связанный с возрастанием давления и практически неизменяющейся плотностью.т.е. неизменным объемом порошка. При достижении предела текучести при сжатии порошкового тела начинается деформация частиц и третья стадия процесса уплотнения (участок С! ‘ ). При перемещении частиц порошка в прессформе возникает давление порожка на стенки. Это давление меньше давления со стороны сжима-ющего порошок пуансона (рис.6) из-за трения между частицами и боковой стенкой прессформы и между отдельными частицами. Величина давления на боковые стенки зависит от трения между части-цами, частицами и стенкой прессформы и равна 25...40% вертикального давления пуансона. Из-за трения на боковых стенках по высоте изделия вертикальная величина давления получается неоди-наковой: у пуансона наибольшей, а у нижней части - наименьшей (рис.6). По этой причине невозможно получить по высоте отпрес-сованной заготовки равномерную плотность. Неравномерность плотности по высоте заметна в тех случаях, когда высота больше ми-нимального поперечного сечения. При прессовании засыпанных в цилиндрическую прессформу одинаковых доз порошка, разделенных прокладками из тонкой фольги получают отдельные слои различной формы и размера (рис.8).
Рис.8 Схема распределения плотности по вертикальному
сеченю спрессованного порошка при одностороннем приложении давления (сверзу).
В вертикальном направлении каждый верхний слой оказывается- тоньше нижележащего. Изгиб слоев объ-ясняется меньшей скоростью перемещения порошка у стенки из-за трения, чем в центре. Наибольшая плотность получается на расс-тоянии около 0.2...0.3 наименьшего поперечного размера прессуе-мого изделия, что связано с действием сил трения между торцом пуансона и порошком.
Для получения более качественных изделий после прессованияполучения более равномерной плотности по различным сечениям применяют смазки (стеариновую кислоту и ее сопи, олеиновую кислоту, поливиниловый спирт, парафин, глицерин и др.), уменьшающие внутреннее трение и трение на стенках инструмента. Смазку обычно)- в порошок, что обеспечивает наилучшие производственные показатели.
При выталкивании изделия из прессформы из-за упругого увеличения ее поперечных размеров, размеры изделия несколько превышают размеры поперечного сечения матрицы. Величина изменения размеров зависит от величины зерен и материала порошка, формы и состаяния поверхности частиц, содержания окислов, механических свойств материала, давления прессования, смазки, материала матрицы и пуансона и других параметров. В направлении действия прессующего усилия изменения размеров больше, чем в поперечном направлении.
Представленная схема (рис.6) показывает одностороннее прессование, которое применяют для прессуемых изделий с соотношением высоты И к наименьшему размеру поперечного сечения d:H/d = 2...3. Если это соотношение больше 3, но меньше 5, то применяют схему двухстороннего прессования; при большем соотношении размеров применяют другой метод.
Прессование сложных изделий, т.е. изделий с неодинаковыми размерами в направлении прессования, связано с трудностями обеспечения равномерной плотности спрессованного изделия в различных сечениях. Эту задачу решают путем применения нескольких пуансонов, через которые прикладывают к порошку различные уси-лия (рис.9). Иногда при изготовлении изделий сложной формы предварительно прессуют заготовку, а затем придают ей окончательную форму при повторном обжатии - прессовании и спекании.
Рис.9 Схема прессования в прессформе сложного изделия: 1- пуансон,2-пуансон, 3-матрица,
4- нижний пуансон.При прессовании кроме стальных прессформ - основного инструмента производства используют гидравлические универсальные или механические прессы. Для прессования сложных изделий ис-пользуют специальные многоплунжерные прессовые установки.
Давление прессования зависит в основном от требуемой плотности изделий, вида порошка и метода его производства. Давление прессования зависит в основном от требуемой плотности изделий, виде порошка и метода его производства. Давление прессования в этом случае может составлять (3...5) Gт пределов текучести материала порошка.
Изостатическое прессование - это прессование в эластичной оболочке под действием всестороннего сжатия. Если сжимающее усилие создается жидкостью-прессование называют гидростатическим. При гидростатическом прессовании порошок засыпают в резиновую оболочку и затем помещают ее после вакуумирования и гер-метизации в сосуд, в котором поднимают давление до требуемой величины. Из-за практического отсутствия трения между оболочкой и порошком спрессованное изделие получают с равномерной плотностью по всем сечениям, а давление прессования в этом случае меньше, чем при прессовании в стальных прессформах. Перед прессованием порошок подвергают виброуплотнению. Гидростатическим прессованием получки? цилиндры, трубы, шары, тигли и другие изделия сложной формы. Этот способ выполняют в специальных установках для гидростатического прессования.
Недостатком гидростатического прессования является невозможность получения прессованных деталей с заданными размерами н необходимость механической обработки при изготовлении изделий точной формы и размеров, а также малая производительность процесса.
Прокатка порошков заключается в захвате и подаче в зазор под действием сил трения вращающихся валков порошка и сжатии порошка (рис.10). При этом получают равномерно спрессованное изделие больной длины с прочностью достаточной для транспорти-ровки на следующую операцию -
Рис. 10 Схема прокатки: а- компактного металла, б-д - порошка, в- вертикальная, г- горизонтальная
с гравитационной подачей порошка, д- горизонтальная с принудительной подачей порошка;
1- валки, 2-бункер, 3- порошек, H- ширина захвата, h- толщина ленты.
спекание. Прокатку проводят в вертикальной и горизонтальной плоскостях, периодически и непре-рывно.
Толщина и плотность заготовки зависят от химического и гранулометрического состава порошка, формы частиц, конструкции бункера, давления порожка на валки, состояния поверхности валков и скорости их вращения и других факторов.
Мундштучное прессование - это формование заготовок из смеси
порошка с пластификатором путем продавливания ее через отверс-
тие в матрице. В качестве пластификатора применяют парафин,
крахмал, поливиниловый спирт, бакелит. Этим методом получают
трубы, прутки, уголки и другие изделия большой длины. Схема
процесс представлена на рис. 11.
Рис.11 Схема мунштучного прессования.
При прессовании труб в обойме
... Нужно иметь ввиду, что минимальный припуск необходимо брать в пределах 0,05-0,07 мм. Детали, имеющие в структуре цементит, необходимо перед калибровкой отжиг. Глава 3.Изделия порошковой металлургии и их свойства: 3.1. Металлокерамические подшипники: Металлокерамические материалы являются в ряде случаев эффективными заменителями антифрикционных подшипниковых сплавов - бронзы, латуни и др. ...
... и т.д., которые находят широкое распространение в электро- и радиотехнике. Методом порошковой металлургии можно также получить сплавы с точно заданным составом, обладающие очень низким и очень высоким электросопротивлением. Металлокерамические материалы применяют в электро- и радиовакуумной промышленности при изготовлении ламп накаливания, в рентгеновских трубках, катодных лампах, выпрямителях ...
... включает в себя такие детали как: корпус, верхняя и нижняя формовочные плиты, захваты, пуансонодержатель, направляющие колонки и втулки, крепежные детали.[3] Схема маршрутно-технологического процесса изготовления детали методом порошковой металлургии 1.1 Термическая обработка пресс-формы С целью увеличения прочности и износостойкости деталей пресс-формы проводят термическую обработку. ...
... технология. Поскольку изделие должно продаваться, то качество и стоимость является определяющим при ее разработке. Данная схема для изготовления детали «упор» из материала ПА-ЖГрДК наиболее эффективна, т.к. обеспечивает деталь всеми необходимыми характеристиками. 2.1 Технологический процесс 2.1.1 Подготовка порошков к смешиванию Порошки представляют собой совокупность частиц округлой и ...
0 комментариев