Курсовая работа
Выполнил студент 2 курса 1222 группы Труфанов Александр Николаевич
Государственное образовательное учреждение высшего профессионального образования «Самарский государственный университет»
Механико-математический факультет
Кафедра дифференциальных уравнений и теории управления
Самара 2004
Теорема существования и единственности решения уравнения
Пусть дано уравнение
с начальным условием
Пусть в замкнутой области R функции и непрерывны). Тогда на некотором отрезке существует единственное решение, удовлетворяющее начальному условию .
Последовательные приближения определяются формулами:
k = 1,2....
Задание №9
Перейти от уравнения
к системе нормального вида и при начальных условиях
, ,
построить два последовательных приближения к решению.
Произведем замену переменных
;
и перейдем к системе нормального вида:
Построим последовательные приближения
Задание №10
Построить три последовательных приближения к решению задачи
,
Построим последовательные приближения
Задание №11
а) Задачу
,
свести к интегральному уравнению и построить последовательные приближения
б) Указать какой-либо отрезок, на котором сходятся последовательные приближения, и доказать их равномерную сходимость.
Сведем данное уравнение к интегральному :
Докажем равномерную сходимость последовательных приближений
С помощью метода последовательных приближений мы можем построить последовательность
непрерывных функций, определенных на некотором отрезке , который содержит внутри себя точку . Каждая функция последовательности определяется через предыдущую при помощи равенства
i = 0, 1, 2 …
Если график функции проходит в области Г, то функция определена этим равенством, но для того, чтобы могла быть определена следующая функция , нужно, чтобы и график функции проходил в области Г. Этого удается достичь, выбрав отрезок достаточно коротким. Далее, за счет уменьшения длины отрезка , можно достичь того, чтобы для последовательности выполнялись неравенства:
, i = 1, 2, …,
где 0 < k < 1. Из этих неравенств вытекает следующее:
, i = 1, 2, …,
Рассмотрим нашу функцию на достаточно малом отрезке, содержащим , например, на . На этом промежутке все последовательные приближения являются непрерывными функциями. Очевидно, что т.к. каждое приближение представляет из себя функцию от бесконечно малого более высокого порядка, чем предыдущее приближение, то выполняются и описанные выше неравенства. Из этих неравенств следует:
что и является условием равномерной сходимости последовательных приближений.
С другой стороны, на нашем отрезке выполняется , что также совершенно очевидно. А так как последовательность сходится, то последовательность приближений является равномерно сходящийся на этом отрезке.
Список литературы
Л.С. Понтрягин. «Обыкновенные дифференциальные уравнения», М.: Государственное издательство физико-математической литературы, 1961
А.Ф. Филиппов «Сборник задач по дифференциальным уравнениям», М.: Интеграл-Пресс, 1998
О.П. Филатов «Лекции по обыкновенным дифференциальным уравнениям»,Самара: Издательство «Самарский университет», 1999
А.Н. Тихонов, А.Б. Васильева «Дифференциальные уравнения», М.: Наука. Физматлит, 1998
Похожие работы
... при финансовой поддержке государственной научно-технической программы «Физика квантовых и волновых процессов» (проект 1.61) и физического учебно-научного центра «Фундаментальная оптика и спектроскопия». 1. Асимптотическое поведение решений дифференциальных уравнений с малым параметром Многие колебательные системы описываются дифференциальными уравнениями с малым параметром при производных: ...
... условий: y(x0)=y0, . Эти начальные условия дают соответственно n уравнений , , , ……………………………… , решая которые относительно c1, c2 , …, cn находят значения этих постоянных. Например, для дифференциального уравнения 1-го порядка общее решение имеет вид y=f(x,c). Тогда начальное условие y(x0)=y0 выделяет из всего семейства интегральных кривых кривую, проходящую через точку M(x0,y0). Геометрическая ...
... . , т.е. таких уравнений, у которых правая часть не является ненпрерывной по x функций рассмотрены в статье [5]. Теория систем автоматического управления, описываемых дифференциальными уравнениями с разрывными правыми частями рассматривается в книгах [13, 14, 15]. В работе С.В. Емельянова [13] излагается один из разделов теории автоматичесеого управления – теория систем с переменной структурой, ...
... начальным условиям . Пусть — характеристическое уравнение для определения мультипликаторов. Так как , то оно принимает вид , где . 2. Устойчивость решений систем дифференциальных уравнений. 2.1. Устойчивость по Ляпунову. Вводя определение устойчивости по Лагранжу и Пуассону в пункте 1.3, описывались свойства одной отдельно взятой траектории. Понятие устойчивости по Ляпунову характеризует ...
0 комментариев