Содержание

Введение……………………………………………………………………….3

I. Знакомство с явлением………………………………………………..5

1.1.    Экспериментальная установка……………………………..5

1.2.    Сила взаимодействия параллельных токов………………6

1.3.Магнитное поле вблизи двух параллельных проводников……………………………………………….…………….9

II. Количественная величина сил……………………………………10

2.1 Количественный расчет силы, действующей на

ток в магнитном поле…………………………………………..10

III. Электрическое взаимодействие…………………………………13

3.1 Взаимодействие параллельных проводников……………13

Заключение…………………………………………………………………..15

Список использованой литературы…………………………………16

Введение

 

Актуальность:

 

Для более полного понимания темы электромагнетизм, необходимо детальнее рассмотреть раздел взаимодействия двух параллельных проводников с током. В данной работе рассматриваются особенности взаимодействия двух параллельных проводников с током. Объясняется их взаимное притягивание и отталкивание. Рассчитывается количественная составляющая сил ампера, для проведенного в ходе работы эксперимента. Описывается действие друг на друга магнитных полей существующих вокруг проводников с током, и наличие электрической составляющей взаимодействия, существованием которой часто пренебрегают.

 

Цель:

Опытным путем рассмотреть существование сил которые участвуют во взаимодействии двух проводников с током и дать им количественную характеристику.

Задачи:

-     Рассмотреть на опыте наличие сил ампера в проводниках, по которым проходит электрический ток.

-     Описать взаимодействие магнитных полей вокруг проводников с током.

-     Дать объяснение происходящим явлениям притяжения и отталкивания проводников.

-     Сделать количественный расчет сил взаимодействия двух проводников.

-     Теоретически рассмотреть наличие электрической составляющей взаимодействия двух проводников с током.

Предмет исследования:

Электромагнитные явления в проводниках.

Объект исследования:

Сила взаимодействия параллельных проводников с током.

Методы исследования:

Анализ литературы, наблюдение и экспериментальное исследование.



I. Знакомство с явлением

 

1.1 Знакомство с явлением

 

Для нашей демонстрации нам необходимо взять две очень тонкие полоски алюминевой фольги длиной около 40 см. Укрепив их в картонной коробке, как показано на рисунке 1. Полоски должны быть гибкими, ненатянутыми, должны находиться рядом, но не соприкасаться. Расстояние между ними должно быть всего 2 или 3 мм. Соеденив полоски с помощью тонких проводов, подсоеденим к ним батарейки, так чтобы в обеих полосках ток шел в противоположных направлениях. Такое соединение будет закорачивать батарейку и вызовет кратковременный ток » 5А[1].

Чтобы батарейки не вышли из строя их нужно подключать на несколько секунд каждый раз.

Подсоеденим теперь одну из батарей противоположными знаками и пропустим ток в одном направлении.

При удачном подключении видимый эффект мал, но зато легко наблюдаем.

Обратим внимание на то, что этот эффект никак не связан с сообщениям заряда полоскам. Электростатически они остаются нейтральными.[2] Чтобы в этом убедиться, что с полосками ничего не происходит когда они действительно заряжаются до этого низкого напряжения, подсоеденим обе полоски к одному полюсу батарейки, или одну из них к одному полюсу, а другую ко второму. (Но не будем замыкать цепь во избежании появления токов в полосках.)

Рисунок 1
 


1.2 Сила взаимодействия параллельных токов

В ходе эксперимента мы наблюдали силу, которую нельзя обЪяснить в рамках электростатики. Когда в двух параллельных проводниках ток идет только в одном направлении, между ними существует сила притяжения. Когда токи идут в противоположных направлениях, провода отталкиваются друг от друга.

Фактическое значение этой силы действующей между параллельными токами, и ее зависимость от расстояния между проводами могут быть измерены с помощью простого устройства в виде весов.[3] В виду отсутствия таковых, примим на веру, результаты опытов которые показывают, что эта сила обратно пропорциональна расстоянию между осями проводов: F ~1/r.

Поскольку эта сила должна быть обусловлена каким – то влиянием, распространяющимся от одного провода к другому, то такая цилиндрическая геометрия создаст силу, зависящую обратно пропорционально первой степени расстояния. Вспомним, что электростатическое поле распространяется от заряженного провода тоже с зависимостью от расстояния вида 1/r.

Исходя из опытов видно также что сила взаимодействия между проводами зависит от произведения протекающих по ним токов. Из симметрии можно сделать вывод что если эта сила пропорциональна I1 , она должна быть пропорциональна и I2. То, что эта сила прямо пропорциональна каждому из токов, представляет собой просто экспериментальный факт[4].


Добавляя коэффициент пропорциональности, можем теперь записать формулу для силы взаимодействия двух параллельных проводов: F ~ l/r, F ~ I1 I2; следовательно,

Коэффициент пропорциональности будет содержать связанный с ним множетель 2p, не в саму константу.[5]

Взаимодействие между двумя парралельными проводами выражается в виде силы на еденицу длины. Чем длиннее провода тем больше сила:

Расстояние r между осями проводов F/l измеряется в метрах. Сила на 1 метр длины измеряется в ньютонах на метр, и токи I1 I2 – в амперах. В этом случае значение m0 в точности равно 4p*10-7 .

В школьном курсе физики первым дается определение кулону через ампер, не давая при этом определения амперу, и затем принимается на веру значение константы k , появляющейся в законе Кулона.

Только теперь возможно перейти ктому, чтобы рассмотреть определение ампера.

Когда полагается что m0 =4p*10-7 , уравнение для F/l определяет ампер. Константа m0называется магнитной постоянной. Она аналогична константе e0  - электрической постоянной. Однако в присвоении значений этим двум константам имеется операционное различие. Мы можем выбирать для какой-нибудь одной из них любое произвольное значение. Но затем вторая константа должна определяться на опыте, поскольку кулон и ампер связаны между собой. В (СИ) выбирается m0 и затем измеряется e0 .

Исходя теперь из выше описанной формулы значение ампера можно выразить словами: если взаимодействие на 1м длины двух длинных параллельных проводов, находящихся на расстоянии 1м друг от друга, равна 2*10-7 Н, то ток в каждом проводе равен 1А.

В случае, когда взаимодействующие провода находятся перпендикулярно друг к другу, имеется лиш очень небольшая область влияния, где провода проходят близко друг к другу, и поэтому можно ожидать, что будет мала и сила взаимодействия между проводами. На самом деле эта сила равна нулю. Поскольку силу можно считать положительной, когда токи параллельны, и отрицательной, когда токи антипараллельны, вполне правдоподобно, что эта сила должна быть равна нулю, когда провода перпендикулярны, ибо это нулевое значение лежит посередине между положительными и отрицательными значениями.



Информация о работе «Взаимодействие параллельных проводников с током»
Раздел: Физика
Количество знаков с пробелами: 15546
Количество таблиц: 4
Количество изображений: 7

Похожие работы

Скачать
18323
0
3

... в однородном поле таким образом, что поток его пересекающий остается неизменным, то работа не производится. Работа по перемещению проводника с током совершается за счет энергии источника тока. 2. Естественный и поляризованный свет. Способы поляризации света. Закон Малюса. Закон Брюстера   Естественный и поляризованный свет Следствием теории Максвелла является поперечность световых волн: ...

Скачать
13889
0
8

... много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при токах достаточно большой силы наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры. Для участка цепи, содержащего ЭДС, закон Ома записывается в следующей форме ...

Скачать
128127
10
22

... и дидактические основы организации обучения позволяют более доступно объяснять изучаемый материал на уроках физики при изучении темы «Основы электродинамики». Анализ различных технологий позволил составить авторскую технологию развития у учащихся направленности на диалогическое общение при групповой форме обучения. От того, на сколько правильно будет построен процесс обучения при использовании ...

Скачать
342209
3
154

... особенностью машины постоянного тока является наличие коллектора и скользящего контакта между обмоткой якоря и внешней электрической цепью. 2.2 Устройство машины постоянного тока Машина постоянного тока (рис. 2.3) по конструктивному исполнению подобна обращенной синхронной машине, у которой обмотка якоря расположена на роторе, а обмотка возбуждения – на статоре. Основное отличие заключается ...

0 комментариев


Наверх