2.1. Методика вимірювання поверхневого імпедансу і аналіз вимог до вимірювальних резонаторів.
Основним елементом вимірювальної схеми є резонатор об’ємний[6], або діелектричний, частина поверхні якого представляє собою поверхню досліджуваного матеріалу. На основі роботи [7] комплексна частота власних коливань резонатора в наближенні малості втрат електромагнітної енергії з врахуванням діелектрика визначається співвідношенням
(2.1.1)
де Н і Н - магнітне поле і його тангенціальна компонента для резонатора з ідеально провідними стінками; 0 - його власна кругова частота; Qd - добротність, яка визначається втратами в діелектрику.
Оскільки у вимірювальному резонаторі лише частина поверхні займає досліджуваний ВТНП-матеріал, то інтеграл по поверхні в співвідношенні (2.1.1) слід представити у вигляді суми
(2.1.2)
де S1 - площа поверхні резонатора, яку займає ВТНП-матеріал з комплексним імпедансом Zs=Rs+jXs; Zo=R0+jX0 - імпеданс остальної металізованої поверхні вимірювального резонатора, при цьому R0= -X0.
З врахуванням (2.1.2) співвідношення для частоти (2.1.1) може бути представлено
(2.1.3)
де G - геометричний фактор для використовуваного типу коливань вимірювального резонатора,
(2.1.4)
к - коефіцієнт, фізичний зміст якого буде визначений далі.
Оскільки уявна частина в співвідношенні (2.1.3) визначає власну добротність вимірювального резонатора Q1, а дійсна - зміну його резонансної частоти в порівнянні 0, то активна і реактивна компоненти поверхневого імпеданса ВТНП-матеріала вираховуєтьсяпо результатам вимірів добротностей і резонансних частот слідуючим чином:
(2.1.5)
де- різниця власних частот вимірювального і контрольного резонаторів ( всі стінки останнього виконані із металу з відомим імпедансом ); Q0 - добротність контрольного резонатора, в якій також враховані діелектричні втрати:
(2.1.6)
В відношені коефіцієнта к=к(1-Q0/Qd) необхідно замітити слідуюче: по-перше, цим коефіцієнтом визначається чутливість вимірювального резонатора к=(Q/Q)/(R/R), по-друге, згідно його визначенню (2.1.4), коефіцієнт к має слідуючий фізичний зміст: це відношення потужності втрат енергії в поверхні S1, яку заміняємо досліджуваним матеріалом, до потужності втрат енергії у всьому резонаторі, за виключенням втрат в елементах зв’язку. Накінець, величина коефіцієнта впливає на похибку вимірювання імпедансу. Для його активної компоненти відносна похибка вимірів, яка отримується варіюванням (2.1.5), має вигляд:
(2.1.7)
При відомій величині поверхневого опору металу R0 похибка вимірювання Rs залежить від похибки добротності, а також від області зміни значень Rs. Наприклад, при Rs<<R0 не можна розраховувати на отримання малих похибок. Мале значення коефіцієнта к також обмежує можливість отримання задовільняючих результатів. Таким чином основною задачою при створенні вимірювального резонатора є вибір матеріалу, який має в області азотних температур найменше значення поверхневого опору. В даний час такими матеріалами є мідь і берилій. В дальнійшому при створенні відповідних технологій перевагу буде віддано ВТНП-матеріалам з різним значенням критичних температур. Крім того, при створенні вимірювального резонатора вибір типа резонатора і його геометричних розмірів повинен забеспечувати приємливі значення коефіцієнта к.
... реакторов. Несомненно, что использование сверхпроводимости будет в ближайшие годы расширяться - взять хотя бы квантовые компьютеры, в которых без сверхпроводимости не обойтись. Однако до сих пор природа необычной высокотемпературной сверхпроводимости остается для ученых загадкой. В обычных сверхпроводниках сверхпроводимость характеризуется параметром порядка, который может зависеть только от ...
... (за исключением тонкого поверхностного слоя толщиной 100...1000 ангстрем) оно всегда равно нулю. Именно эти два свойства - бесконечная проводимость и идеальный диамагнетизм - являются главными характеристиками сверхпроводимости. Исследования открыли ещё один важный эффект. Если увеличивать напряженность магнитного поля, то при некоторой величине его Н=Нс, называемой "критическое магнитное поле", ...
... фундаментальных исследований может, как правило, претендовать только на статус любителя по части их практических приложений. Тем не менее возможно указать на некоторые перспективы: -когда рассматривался как ВТСП карбин то мечты о его высокотемпературной сверхпроводимости можно было считать беспочвенными: уж очень сходен карбин по своей структуре с тем полимером , который предлагал Литлл и который ...
... невозможно. Практического применения высокотемпературные сверхпроводники на сегодняшний день не находят по причине их крайней дороговизны и хрупкости, однако разработки в этом направлении продолжаются. Сверхпроводящие материалы Явление сверхпроводимости при криогенных температурах достаточно широко распространено в природе. Сверхпроводимостью обладают 26 металлов. Большинство из них ...
0 комментариев