4.1. Виды деформаций.
Атомы и молекулы твёрдых тел находятся в равновесных положениях, в которых результирующая сила равна нулю. При сближении атомов преобладает сила отталкивание, а при их удалении от положения равновесия- сила притяжения. Это обусловливает механическую прочность твердых тел, т.е. их способность противодействовать изменению формы и объёма. Растяжению тел препятствуют силы межатомного притяжения, а сжатия- силы отталкивания.
Среди деформаций, возникающих в твердых телах, различают пять основных видов: растяжения, сжатие, сдвиг, кручение и изгиба, а также деформации бывают упругими и пластическими.
4.2. Теоретическая оценка характеристик механических свойств твёрдого тела и сравнение её с результатами эксперимента.
Зная поверхностную энергию кристалла, и исходя из представлений о строении идеального кристалла, можно теоретически рассчитать основные характеристики механических свойств. Так, например, чтобы рассчитать предел прочности при растяжении образца, необходимо найти силу F, при которой происходит разрыв материала, т.е. нарушается силы взаимодействия между плоскостями в кристалле.
А=F*∆l,
Где ∆l- расстояние, на которое надо удалить плоскости друг от друга, чтобы преодолеть силы их взаимного притяжения.
С другой стороны, разрушения всегда связано с образованием новой поверхности, т.е. с увеличением поверхностной энергии. Как известно, поверхностную энергию можно определить, умножив коэффициент поверхностного натяжения на площадь поверхности. Таким образом, работа, которая совершается при разрыве образца, т.е. при образовании новой поверхности
A=α*2S
Приравниваем выражения и получим: 2αS=F∆l, откуда сила, при которой происходит разрыв материала,
F=2αS/∆l.
Зная силу F, можно определить предел прочности, т.е. то напряжения, при котором происходит разрыв:
σ = F/S; σ =2αS/∆lS; σ = 2α/∆l.
Чтобы показать, как найти модуль Юнга, характеризующий упругие свойства материала, надо предположить, что до самого разрыва образца деформация остаётся упругой, т.е. справедлив закон Гука: σ =Eε.
Следовательно, при абсолютном удлинении ∆α, найдём относительную деформацию ε = ∆α/α.
Следовательно модуль Юнга равен Е= σ/ε.
Мы видим, что только часть механических свойств можно более или менее точно объяснить, исходя из модели идеального газа. Поэтому была выдвинута гипотеза о том, что причина расхождения теоретических расчётов и экспериментальных результатов заключается в несовершенстве кристаллической решётки. Эта гипотеза нашла своё блестящее подтверждение в последующих экспериментальных исследованиях.
Таким образом, некоторые механические свойства материалов не связаны со структурными несовершенствами. Эти свойства называют структурно – нечувствительными свойствами. Те же механические свойства, которые тесно связаны со структурными несовершенствами кристаллов или с дефектами кристаллов, называют структурно - чувствительными свойствами.
4.3.Точечные дефекты и их образования
Точечные дефекты - это нарушение кристаллической решётки в изолированных друг от друга точках. К точечным дефектам относятся вакансии, т.е. такие узлы решётки, в которых нет атомов (дырки) (рис48а). Точечными дефектами могут быть атомы внедрения, т.е. лишние атомы, поместившиеся в промежутках между атомами, расположенными в узлах кристаллической решётки (рис 48б). Это могут быть и примеси (инородные атомы), занимающие места в решётке (рис48в). Размеры точечных дефектов примерно равны диаметру атома.
Образования дефектов: в результат теплового движения атомов и их взаимодействия возможны отклонения энергии отдельных атомов от среднего значения, при котором атом удерживается в узле кристаллической решётки. При этом большие отклонения от средней величины менее вероятны, чем малые отклонения. Однако большие отклонения, превышающие среднее значение энергии на несколько порядков всё-таки возможны.
Дефекты могут появиться также в процессе роста кристалла.
Образование точечных дефектов возможно в процессе роста кристалла и из-за флуктуации энергии.
Экспериментально подтверждает наличие точечных дефектов в кристаллах явление диффузии в твёрдых телах.
На самом деле, в кристалле без дефектов никакой диффузии не должно было бы быть. Если атомы колеблются около узлов кристаллической решётки и не «покидают» эти положения, то не может быть проникновения атомов одного кристалла в другой.
Между тем установлено, что диффузия в твёрдых телах происходит, хотя и в меньших масштабах, чем в газах и жидкостях. Особенно интересно, что интенсивность этого процесса растёт с увеличением температуры.
Согласно этой теории диффузия в кристаллах происходит за счёт движения атомов внедрения, движения вакансии или какого-либо обмена местами между атомами. Для того чтобы атомы внедрения «перебрались» в другие промежутки между узлами, а вакансии - в другие узлы, необходимо, чтобы атомы, составляющие непосредственное окружение точечного дефекта, «расступились». При повышении температуры атомы «расступаются» чаще и дефекты перемещаются по кристаллу быстрее, а следовательно, и процесс диффузии происходит быстрее. Кроме того, с ростом температуры увеличивается и число точечных дефектов. Однако определяющим фактором в увеличении интенсивности диффузии при увеличении температуры является не рост числа дефекта, а их продвижение.
... и турмалина. Из многочисленных кристаллографических модификаций кварца в качестве пьезо-электрика используется чаще всего низкотемпературный а-кварц, устойчивый до температуры 573°С. Пьезоэлектрические и пироэлектрические свойства кристаллов используются в технике уже много лет. Одно из применений пьезо-электриков известно буквально каждому. Это звукосниматели в наших проигрывателях, которые ...
... , только если, например, нагреть кристалл так, чтобы он начал плавится. Порядок, закономерность, периодичность, симметрия расположения атомов - вот что характерно для кристаллов. Во всех кристаллах, во все твердых веществах частицы расположены правильным, четким строем, выстроены симметричным, правильным повторяющимся узором. Пока есть этот порядок существует твердое тело, кристалл. Нарушен ...
... температурные колебания, либо с повышением концентрации вещества в растворе или газе, что приводит к увеличению вероятности встречи частиц друг с другом, то есть к возникновению зародышей. Таким образом, рост кристаллов можно рассматривать как процесс, посредством которого мельчайшие кристаллические частицы – зародыши – достигают макроскопических размеров. Причем кристаллизация протекает не во ...
... из этого можно заключить, что факт наличия коллоидных выделений в синей соли и их размеры, полученные методом оптической спектроскопии, подтверждены прямым наблюдением поверхности сколов в атомно-силовом микроскопе. Таким образом в результате изучения оптического поглощения галитов можно сделать следующие выводы. В бесцветных образцах какие-либо центры окраски отсутствуют. В синих окрашенных ...
0 комментариев