4.7. Повышение прочности материалов

Дислокации и их движение оказывают большое влияние на прочность материалов, снижая их сопротивление деформированию, делая их пластичнее. Однако взаимодействие дислокаций между собой, а также с препятствиями другой природы уменьшает подвижность дислокаций. Это приводит к уменьшению пластичности и к повышению прочности материалов. Можно графически представить влияние дислокации на сопротивление сдвигу (рис29).

рис. 29

 Здесь по оси абсцисс отложена плотность дислокаций, а по ординате -сопротивление сдвигу. Минимальное сопротивление сдвигу определяется некоторой критической плоскостью дислокации ркр, приближённо оцениваемой 107-108 см -2. из анализа этой кривой следует, что можно повышать прочность, повышая плотность дислокаций. Этот способ повышения прочности называют наклёпом. При наклёпе в результате взаимодействия дислокаций их дальнейшее движение затрудняется. Наклёп проводят, накатывая заготовку между валками. Валки оказывают на заготовку большое давление и раскатывают её в плоские листы. В результате этого увеличивается число дислокаций, а следовательно у этих листов повышается сопротивления пластической деформации.

Если продолжить анализ кривой, то можно сделать вывод, что прочность можно повысить и другим способом, уменьшая плотность дислокаций, приготовляя образцы металлов в виде очень тонких нитей (толщина 2-10мм), так называемых усов, удалось поднять прочность в чистой меди, например, до 7*109н/м2, против реальной величины сопротивления сдвигу 105 н/м2.

Таким образом, изучение структуры твёрдого тела и улучшение на этой основе тех или иных механических свойств материалов в зависимости от их

практического назначения приводят к качественному изменению самих материалов, к прочности и долговечности конструкций и машин.


Электрические и магнитные свойства твёрдых тел

 V. Электрические свойства твёрдых тел

По способности проводить электрический ток все вещества в природе условно делят на три основных класса: проводники, полупроводники и диэлектрики.

5.1. Классическая электронная теория электропроводности металлов

 

Если металлическую пластинку, вдоль которой течет постоянный электрический ток, поместить в перпендикулярное к ней магнитное поле, то между гранями, параллельными направлениям тока и поля возникает разность потенциалов U=j1-j2. Она называется Холловской разностью потенциалов.

Основная идея этой теории состоит в том, что электроны в металле свободны и образуют своеобразный электронный газ, подобный идеальному газу.

При столь большой концентрации электронов их взаимодействие между собой, как и с ионами решётки металла, очень велико. Однако средняя сила, действующая на каждый электрон со стороны всех остальных электронов и ионов, равных нулю, и поэтому в известном приближении такой электрон можно рассматривать как свободный, который взаимодействует с ионами решётки только при упругих соударениях. Следовательно, электронный газ, подобно идеальному газу, обладает лишь кинетической энергией mv2T/2=3/2kT, где m - масса электрона; v2T- средняя квадратичная скорость его движения; k -постоянная Больцмана; Т - абсолютная температура. Это выражение позволяет определить среднюю квадратичную скорость теплового движения электрона:

VT=√v2T=√3kT/m.

Хаотическое тепловое движение электронов и непрерывные столкновения с ионами кристаллической решётки приводят к тому, что нельзя указать преимущественного направления движения заряда - в проводнике нет электрического тока. Следовательно, ток может появиться лишь при наличии электрического поля, сообщающего всем электронам некоторую добавочную, «дрейфовую» скорость, направленную вдоль поля.

Одним из успехов классической электронной теории является также объяснения связи между электропроводностью металлов и их теплопроводностью. Действительно, обладая энергией теплового движения, электроны проводимости участвуют в переносе тепла в металле, и, чем выше концентрация электронов, от которой зависит электропроводность, тем больше и теплопроводность металла. Прямая пропорциональная зависимость электропроводности и теплопроводности была установлена опытным путём И.Видеманом и Р.Францем ещё в 1853г. Открытый ими закон имеет вид: x/γ=AT, х - коэффициент теплопроводности; Т- абсолютная температура; А-константа. На основе электронной теории Лоренца вычислил величину этой константы.

В 1901 г. Физик Э.Рике поставил следующий опыт. Через три металлических цилиндра (медный, алюминиевый, медный), одинакового радиуса, которые плотно соприкасались друг с другом хорошо отшлифованными торцевыми поверхностями, в течении очень долгого времени пропускали ток. При этом через цилиндры прошёл заряд 3,5*10 -6к. тщательное взвешивание цилиндров до опыта и после него показало, что масса их не изменилась. Это позволило установить, что электропроводность металлов обусловлена перемещением таких заряжённых частиц, которые являются общими для всех металлов.

В 1912 году советские физики Л.И.Мандельштам и Н.Д.Папалекси на опыте по наблюдению инерционного движения заряжённых частиц в металлическом проводнике подтвердили, что в металле имеются такие частицы, которые слабо связаны с кристаллической решёткой.

В 1916 году американские физики Толмен и Стюарт, применив чувствительный гальванометр вместо телефона, показали, что частицы, образующие инерционный ток при торможении катушки, имеют отрицательный электрический заряд, а также вычислили удельный заряд этих частиц e/m. Они получили 4,8*1017ед., что оказалось близким к значению удельного заряда электрона, вычисленному в опытах по отклонению пучка электронов в электрических и магнитных полях. Таким образом, в работах Толмена и Стюарта электронная теория проводимости металлов получила строгое экспериментальное обоснование.

Однако было обнаружено, что основная идея этой теории - наличие в металле электронного газа, подобно идеальному, - находится в противоречии с некоторыми опытными фактами.

Молярная теплоёмкость металла, вычисленная на основе электронной теории, должна быть равна 37,5дж/(моль*град), а та же теплоёмкость, полученная экспериментально,- 25 дж/моль*град. Такой же результат можно получить и теоретически, если предположить, что электронный газ не обладает теплоёмкостью. Подобное предположение выглядит очень странным, так как согласно электронной теории температура металла определяется не только энергией колебания атомов в решётке. Но и энергией движения электронов.


Информация о работе «Кристаллы в природе»
Раздел: Физика
Количество знаков с пробелами: 169673
Количество таблиц: 2
Количество изображений: 43

Похожие работы

Скачать
75802
1
1

... и турмалина. Из многочисленных кристаллографических модификаций кварца в качестве пьезо-электрика используется чаще всего низкотемпературный а-кварц, устойчивый до температуры 573°С. Пьезоэлектрические и пироэлектрические свойства кристаллов используются в технике уже много лет. Одно из применений пьезо-электриков известно буквально каждому. Это звукосниматели в наших проигрывателях, которые ...

Скачать
61410
3
0

... , только если, например, нагреть кристалл так, чтобы он начал плавится. Порядок, закономерность, периодичность, симметрия расположения атомов - вот что характерно для кристаллов. Во всех кристаллах, во все твердых веществах частицы расположены правильным, четким строем, выстроены симметричным, правильным повторяющимся узором. Пока есть этот порядок существует твердое тело, кристалл. Нарушен ...

Скачать
13652
0
0

... температурные колебания, либо с повышением концентрации вещества в растворе или газе, что приводит к увеличению вероятности встречи частиц друг с другом, то есть к возникновению зародышей. Таким образом, рост кристаллов можно рассматривать как процесс, посредством которого мельчайшие кристаллические частицы – зародыши – достигают макроскопических размеров. Причем кристаллизация протекает не во ...

Скачать
70444
0
0

... из этого можно заключить, что факт наличия коллоидных выделений в синей соли и их размеры, полученные методом оптической спектроскопии, подтверждены прямым наблюдением поверхности сколов в атомно-силовом микроскопе. Таким образом в результате изучения оптического поглощения галитов можно сделать следующие выводы. В бесцветных образцах какие-либо центры окраски отсутствуют. В синих окрашенных ...

0 комментариев


Наверх