1. Запишем уравнение состояния цепи после коммутации
. | (1) |
2. Используя метод условной линеаризации, определим второе слагаемое в левой части (1) как
, | (2) |
где ; и - амплитуды потокосцепления и тока в установившемся послекоммутационном режиме; .
3. Подставив (2) в (1), получим линейное дифференциальное уравнение
,
решением которого на основании классического метода расчета переходных процессов является
.
4. Принужденная составляющая определяется соотношением
,
где .
Для определения и предположим (с последующей проверкой), что . При этом условии и . По зависимости для полученного значения найдем .Тогда и , т.е. сделанное выше предположение корректно.
Следует отметить, что в общем случае значения и могут быть определены, например, итерационным методом.
Определив , запишем
.
Поскольку по условию , то .
Таким образом,
. | (3) |
6. Не решая трансцендентное уравнение, будем считать, что максимальное значение потокосцепления имеет место примерно через полпериода своего изменения, т.е. при . Подставив это время в (3), получим:
По кривой для найдем максимальное значение тока , которое в раз превышает амплитуду тока в установившемся послекоммутационном режиме. Напомним, что для линейной цепи
Примечания: 1. Обычно при использовании метода условной линеаризации для расчета переходного процесса при подключении нелинейной катушки индуктивности к источнику синусоидального напряжения эквивалентная линейная индуктивность определяется исходя из амплитудных значений тока и потокосцепления в установившемся послекоммутационном режиме, как это и было сделано в рассмотренном выше примере. Однако если необходимо оценить максимально возможное значение тока, то величину индуктивности следует определять по начальному участку вебер–амперной характеристики, где максимальна.
2. Если сопротивление резистора в ветви с нелинейной катушкой достаточно велико, так что , то следует пренебречь нелинейностью слагаемого , положив . В этом случае нелинейное уравнение (1) сводится к линейному вида
,
и соответственно кривая определяется по кривым и .
Метод аналитической аппроксимации
Метод основан на аппроксимации характеристики нелинейного элемента аналитической функцией, которая должна, с одной стороны, достаточно точно отображать исходную нелинейную характеристику на участке перемещения рабочей точки, а с другой стороны, обеспечивать возможность достаточно несложного интегрирования полученного дифференциального уравнения (в частности, с использованием табличных интегралов).
Метод применим к нелинейным цепям с одним накопителем энергии, описываемым дифференциальными уравнениями первого порядка, а также к цепям, описываемым уравнениями, сводящимися к уравнениям первого порядка путем замены переменных.
Ценность метода заключается в получении выражения исследуемой величины в общем виде, что позволяет осуществлять требуемый анализ процессов при варьировании параметров схемы.
В качестве примера использования метода определим ток в схеме на рис. 3, полагая, что характеристика нелинейной катушки имеет вид типовой кривой на рис. 2.
1. Для решения задачи выберем выражение аналитической аппроксимации вида . Определяя параметр из условия соответствия данной функции точке установившегося послекоммутационного режима, получим
, | (4) |
где .
... 4 Содержание отчета Схема включения однофазного счетчика в сеть. Схема включения трехфазного счетчика (п.7). Таблица с результатами измеренных и вычисленных значений. 3. Выводы о результатах поверки счетчика. Контрольные вопросы. 1. Единицы измерения электрической энергии. 2. Основные части счетчика и их назначение. 3. Принцип работы индукционного ...
... задач и выдвигать гипотезы , которые могут быть подтверждены или опровержены. Знания могут быть получены в процессе наблюдения за каким-либо объектогм. Режимы работы инженера по знаниям, консультолога в процессе приобретения знаний. протокольный анализ записываются рассуждения вслух в процессе решения задач. О.с. составляются протоколы, которые анализируются Интервью - ведется диалог с ...
... Сибири».5. Заключение В своем реферате я попытался раскрыть некоторые стороны жизней Неелова, Артамонова, Ремезова и Рябкова. Все они выходцы из ТИИ и все они добились своей цели в жизни, стали высокими людьми и никогда, наверное, не забудут свои студенческие годы. Биография каждого представленного кандидата раскрыта, показаны их жизненные пути, взлеты и падения. Каждый из них благодарен инс
... оказывает религиозное сознание японцев и дух коллективизма, зачастую посетителей какого либо парка, музея или кинотеатра являются служащими какой-либо из фирм. 2.3 Традиции организации досуга в Японии Традиционные формы проведения досуга занимают огромное место в жизни японцев. И по сей день существуют клубы любителей чая, проводятся соревнования составителей ароматов – кодо. ДО сих пор гейша ...
0 комментариев