2.1. Развитие атомной промышленности
После втоpой мировой войны мировая электроэнергетика стала крупнейшим инвестиций. Это было вызвано быстрым ростом спроса на электроэнергию, по темпам значительно превосходившим рост населения и национального дохода. Основной упор делался на тепловые электростанции (ТЭС), работающие на угле и, в меньшей степени, на нефти и газе, а также на гидроэлектростанции. До 1969 года АЭС промышленного типа не существовало. К 1973 практически во всех промышленно развитых странах оказались исчерпанными ресурсы крупномасштабной гидроэнергетики. Скачок цен на энергоносители после 1973, быстрый рост потребности в электроэнергии, а также растущая озабоченность возможностью утраты независимости национальной энергетики – все это способствовало утверждению взгляда на атомную энергетику как на единственный реальный альтернативный источник энергии. Эмбаpго на арабскую нефть 1973–1974гг породило дополнительную волну заказов и оптимистических прогнозов развития атомной энергетики.
Но каждый следующий год вносил свои коррективы в эти прогнозы. С одной стороны, атомная энергетика имела своих сторонников в правительствах, в урановой промышленности, исследовательских лабораториях и среди влиятельных энергетических компаний. С другой стороны, возникла сильная оппозиция, в которой объединились группы, защищающие интересы населения, чистоту окружающей среды и права потребителей. Споры, которые продолжаются и по сей день, сосредоточились главным образом вокруг вопросов вредного влияния различных этапов топливного цикла на окружающую среду, вероятности аварий реакторов и их возможных последствий, организации строительства и эксплуатации реакторов, приемлемых вариантов захоронения ядерных отходов, потенциальной возможности саботажа и нападения террористов на АЭС, а также вопросов увеличения национальных и международных усилий в области нераспространения ядерного оружия [3; стр.178-182].
2.2. Проблемы развития энергетики
Развитие индустриального общества опирается на постоянно растущий уровень производства и потребления различных видов энергии.
Как известно, в основе производства тепловой и электрической энергии лежит процесс сжигания ископаемых энергоресурсов – угла, нефти или газа, а в атомной энергетике - деление ядер атомов урана и плутония при поглощении нейтронов.
Масштаб добычи и расходования энергоресурсов, металлов, воды и воздуха для производства необходимого человечеству количества энергии огромен, а запасы ресурсов стремительно сокращаются. Особенно остро стоит проблема быстрого исчерпания запасов органических природных энергоресурсов.
Мировые запасы энергоресурсов оцениваются величиной 355 Q, где Q - единица тепловой энергии, равная Q=2,521017 ккал = 36109 тонн условного топлива /т.у.т./, топлива с калорийностью 7000 ккал/кг, так что запасы энергоресурсов составляют 12,81012 т.у.т.
Из этого количества примерно одня треть (что составляет ~ 4,31012 т.у.т.) может быть извлечена с использованием современной техники при умеренной стоимости топливодобычи. С другой стороны, современные потребности в энергоносителях составляют 1,11010 т.у.т./год и растут со скоростью 3-4% в год, то есть удваиваются каждые 20 лет.
Не составляет никакого труда догадаться, что органические ископаемые ресурсы, даже при вероятном замедлении темпов роста энергопотребления, будут в значительной мере израсходованы в самом ближайшем будущем.
Отметим также, что при сжигании ископаемых углей и нефти, обладающих сернистостью около 2,5 %, ежегодно образуется до 400 млн тонн сернистого газа и окислов азота, что составляет 70 кг вредных веществ на каждого жителя Земли в год.
Использование энергии атомного ядра и развитие атомной энергетики частично снимает остроту этой проблемы. Действительно, открытие деления тяжелых ядер при захвате нейтронов, сделавшее CC век атомным, стало существенным складом к запасам энергетического ископаемого топлива. Запасы урана в земной коре оцениваются огромной цифрой - 1014 тонн. Однако основная масса этого богатства находится в рассеяном состоянии - в гранитах, базальтах. В водах мирового океана количество урана достигает 4109 тонн. В тоже время богатых месторождений урана, где добыча была бы недорога, известно сравнительно немного. Поэтому массу ресурсов урана, которую можно добыть при современной технологии и при умеренных ценах, оценивают в 108 тонн. Ежегодные потребности в уране составляют, по современным оценкам, 104 тонны естественного урана. Так что эти запасы позволяют, как сказал академик А.П.Александров, "убрать Дамоклов меч топливной недостаточности практически на неограниченное время"[4; стр.216].
Другая важная проблема современного индустриального общества - обеспечение сохранности природы, чистоты воды и воздуха.
Известна озабоченность ученых по поводу "парникового эффекта", возникающего из-за выбросов углекислого газа при сжигании органического топлива, и соответствующего глобального потепления климата на нашей планете. Проблемы загазованности воздушного бассейна, "кислых" дождей, отравления рек приблизились во многих районах к критической черте.
Атомная энергетика не потребляет кислорода и имеет ничтожное количество выбросов при нормальной эксплуатации, что позволяет устранить возможность возникновения парникового эффекта с тяжелыми экологическими последствиями глобального потепления.
Чрезвычайно важным обстоятельством является тот факт, что атомная энергетика доказала свою экономическую эффективность практически во всех районах земного шара. Кроме того, даже при большом масштабе энергопроизводства на АЭС, атомная энергетика не создаст особых транспортных проблем, поскольку требует минимальных транспортных расходов, что освобождает общество от бремени постоянных перевозок огромных количеств органического топлива [10; стр. 248-253].
... атомных энергоблоков и увеличения экспортного потенциала; · разработка и овладение в промышленных масштабах ядерной энерготехнологией, отвечающей требованиям крупномасштабной энергетики по экономике, безопасности и топливному балансу. Стратегия развития атомной энергетики России в первой половине XXI века утверждена решением коллегии Минатома 21 декабря 1999 г. Современное состояние атомной ...
... использования возобновляемых источников энергии все это свидетельствует о необходимости увеличения вклада ядерной энергетики. Учитывая все перечисленное выше, можно сделать вывод, что перспективы развития атомной энергетики в мире будут различны для разных регионов и отдельных стран, исходя из потребностей и электроэнергии, масштабов территории, наличия запасов органического топлива, возможности ...
... (СХОЯТ). "Это событие по праву относится к важнейшим историческим, - подчеркнул во время выступления на Запорожской АЭС председатель облгосадминистрации Евгений Карташов. - Начался новый этап в развитии атомной энергетики Украины, и, как всегда, Запорожский край первым осваивает новые технологии". Заместитель министра топлива и энергетики, президент НАЭК "Энергоатом" Нур Нигматуллин зачитал ...
... , имеющая дело со строением атомов и исследующая неизвестные до того времени силы и взаимодействия частиц в ядре атома. Три открытия 1932 г. считаются особенно важными для дальнейшего развития атомной и ядерной физики: 1. открытие нейтрона; 2. обнаружение позитрона К. Андерсоном в космических лучах. Это была первая открытая учеными античастица; 3. открытие американским химиком Г. ...
0 комментариев