3.4. Энергия приливов и отливов

Несоизмеримо более мощным источником водных потоков являются приливы и отливы. Подсчитано, что потенциально приливы и отливы могут дать человечеству примерно 70 млн миллиардов киловатт-часов в год. Для сравнения: это примерно столько же энергии, сколько может дать использование в энергетических целях разведанных запасов каменного и бурого угля, вместе взятых; вся экономика США 1977 г. базировалась на производстве 200 млрд киловатт-часов, вся экономика СССР того же года – на 1150 млрд, хрущевский “коммунизм” к 1980 г. должен был быть построен на 3000 млрд киловатт-часов. Образно говоря, одни только приливы могли бы обеспечить процветание на Земле тридцати тысяч современных “Америк” при максимально эффективном использовании приливов и отливов, но до этого пока далеко. Проекты приливных гидроэлектростанций детально разработаны в инженерном отношении, экспериментально опробованы в нескольких странах, в том числе и на Кольском полуострове. Продумана даже стратегия оптимальной эксплуатации приливной электростанции (ПЭС): накапливать воду в водохранилище за плотиной во время приливов и расходовать ее на производство электроэнергии, когда наступает “пик потребления” в единых энергосистемах, ослабляя тем самым нагрузку на другие электростанции.

На сегодняшний день ПЭС уступает тепловой энергетике: кто будет вкладывать миллиарды долларов в сооружение ПЭС, когда есть нефть, газ и уголь, продаваемые развивающимися странами за бесценок? В тоже время она обладает всеми необходимыми предпосылками, чтобы в будущем стать важнейшей составляющей мировой энергетики, такой, какой сегодня, к примеру, является природный газ.

Для сооружения ПЭС даже в наиболее благоприятных для этого точках морского побережья, где перепад уровней воды колеблется от 1-2 до 10-16 метров, потребуются десятилетия, или даже столетия. И все же процент за процентом в мировой энергобаланс ПЭС могут и должны начать давать уже на протяжении этого столетия.

Первая приливная электростанция мощностью 240 МВт была пущена в 1966 г. во Франции в устье реки Ранс, впадающей в пролив Ла-Манш, где средняя амплитуда приливов составляет 8.4 м. Открывая станцию, президент Франции Шарль де Голль назвал ее выдающимся сооружением века. Несмотря на высокую стоимость строительства, которая почти в 2.5 раза превосходит расходы на возведение речной ГЭС такой же мощности, первый опыт экплуатации приливной ГЭС оказался экономически оправданным. ПЭС на реке Ранс входит в энергосистему Франции и в настоящее время эффективно используется.

Существуют также проекты крупных ПЭС мощностью 320 МВт (Кольская) и 4000 МВт (Мезенская) на Белом море, где амплитуда приливов составляет 7-10 м. Планируется использовать также огромный энергетический потенциал Охотского моря, где местами, например в Пенжинской губе, высота приливов достигает 12.9 м, а в Гижигинской губе - 12-14 м [9; стр. 56].

Благоприятные предпосылки для более широкого использования энергии морских приливов связаны с возможностью применения геликоидной турбины Горлова, которая позволяет сооружать ПЭС без плотин, сокращая расходы на строительство.

3.5. Энергия волн

Уже инженерно разработаны и экспериментально опробованы высокоэкономичные волновые энергоустановки, способные эффективно работать даже при слабом волнении или вообще при полном штиле. На дно моря или озера устанавливается вертикальная труба, в подводной части которой сделано “окно”; попадая в него, глубинная волна (а это – почти постоянное явление) сжимает воздух в шахте, а тот крутит турбину генератора. При обратном движении воздух в турбине разрежается, приводя в движение вторую турбину. Таким образом, волновая электростанция работает беспрерывно почти при любой погоде, а ток по подводному кабелю передается на берег.

Некоторые типы ВЭС могут служить отличными волнорезами, защищая побережье от волн и экономя таким образом миллионы долларов на сооружение бетонных волнорезов.

Под руководством директора Лаборатории энергетики воды и ветра Северо-Восточного университета в Бостоне был разработан проект первой в мире океанской электростанции. Она будет сооружена во Флоридском проливе, где берет начало Гольфстрим. На его выходе из Мексиканского залива мощность водяного потока составляет 25 млн м3 в секунду, что в 20 раз превышает суммарный расход воды во всех реках земного шара! По подсчетам специалистов средства, вложенные в проект, окупятся в течение пяти лет.

В этой уникальной электростанции для получения тока мощностью 38 кВт будет использоваться турбина Горлова. Эта геликоидная турбина имеет три спиральные лопасти и под действием потока воды вращается в 2-3 раза быстрее скорости течения. В отличие от многотонных металлических турбин, применяемых на речных гидроэлектростанциях, размеры изготовленной из пластика турбины Горлова невелики (диаметр 50 см, длина 84 см), масса ее всего 35 кг. Эластичное покрытие поверхности лопастей уменьшает трение о воду и исключает налипание морских водорослей и моллюсков. Коэффициент полезного действия турбины Горлова в три раза выше, чем у обычных турбин.

Гольфстрим - не единственное океанское течение, которое может быть использовано для выработки энергии. Японские ученые, например, говорят о большой эффективности подобных сооружений на тихоокеанском течении Куросио. О его колоссальном энергетическом потенциале позволяют судить следующие цифры: у южной оконечности острова Хонсю ширина течения составляет 170 км, глубина проникновения - до 700 м, а объем потока - почти 38 млн м3 в секунду!


Информация о работе «Проблемы развития атомной энергетики»
Раздел: Физика
Количество знаков с пробелами: 58153
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
21700
3
1

... атомных энергоблоков и увеличения экспортного потенциала; ·  разработка и овладение в промышленных масштабах ядерной энерготехнологией, отвечающей требованиям крупномасштабной энергетики по экономике, безопасности и топливному балансу. Стратегия развития атомной энергетики России в первой половине XXI века утверждена решением коллегии Минатома 21 декабря 1999 г. Современное состояние атомной ...

Скачать
28084
4
0

... использования возобновляемых источников энергии все это свидетельствует о необходимости увеличения вклада ядерной энергетики. Учитывая все перечисленное выше, можно сделать вывод, что перспективы развития атомной энергетики в мире будут различны для разных регионов и отдельных стран, исходя из потребностей и электроэнергии, масштабов территории, наличия запасов органического топлива, возможности ...

Скачать
21058
1
0

... (СХОЯТ). "Это событие по праву относится к важнейшим историческим, - подчеркнул во время выступления на Запорожской АЭС председатель облгосадминистрации Евгений Карташов. - Начался новый этап в развитии атомной энергетики Украины, и, как всегда, Запорожский край первым осваивает новые технологии". Заместитель министра топлива и энергетики, президент НАЭК "Энергоатом" Нур Нигматуллин зачитал ...

Скачать
76808
0
0

... , имеющая дело со строением атомов и исследующая неизвестные до того времени силы и взаимодействия частиц в ядре атома. Три открытия 1932 г. считаются особенно важными для дальнейшего развития атомной и ядерной физики: 1.     открытие нейтрона; 2.     обнаружение позитрона К. Андерсоном в космических лучах. Это была первая открытая учеными ан­тичастица; 3.     открытие американским хими­ком Г. ...

0 комментариев


Наверх