2.2. ЭФФЕКТИВНОСТЬ ПОРТФЕЛЯ. ДИВЕРСИФИКАЦИЯ.

 

Предположим, что инвестор купил какую-либо ценную бумагу по известной цене и через некоторое время намеревается продать ее по заранее не известной цене, а также за время владения этой бумагой инвестор рассчитывает получить дивиденды в неизвестном объеме.

Эффективность такой операции можно считать случайной величиной X. За период времени t эффективность ценной бумаги

Xt = Ct+1 - Ct / Ct

 

Где Ct+1 - цена продажи бумаги в (t+1)-й момент времени;

Ct - цена покупки бумаги в t-й момент времени.

Ожидаемой эффективностью (эффектом) будем считать математическое ожидание случайной величины X:

m = E(X)

 

Доход, получаемый инвестором от вложений в ценные бумаги, неизменно сопряжен с риском, представляющим собой возможность возникновения обстоятельств, при которых инвестор может понести потери. Принято выделять два типа рисков: систематический и несистематический.

Систематический риск определяется глобальными обстоятельствами, не зависящими от инвестора и эмитента. К таким обстоятельствам можно отнести политические события на уровне страны и на международном уровне, изменения законодательства, экономические реформы и т.д.

Несистематический риск определяется факторами, связанными с деятельностью предприятия-эмитента и изменениями рыночной конъюнктуры. Несистематический риск можно уменьшить путем диверсификации портфеля; систематический же риск путем диверсификации уменьшить нельзя.

Можно составить безрисковый портфель, но отсутствие риска для него будет означать отсутствие только несистематического риска, систематический риск остается. Например, а российских условиях безрисковым портфелем является портфель в иностранной валюте (долларах CША), но и он подвержен систематическому риску, связанному, напри­мер, с возможными изменениями законодательства, касающимися ог­раничений обращения иностранной валюты на территории России.

Если в течение длительного времени держать средства в виде без­рисковых активов, то и доход от них будет нулевым, поэтому большин­ство инвесторов опасается риска, но идет на некоторый риск, если он компенсируется дополнительным доходом.

В качестве меры риска, считая эффективность некоторой ценной бу­маги случайной величиной X, можно принять ее вариацию (дисперсию)

 

V=E{(X-m)2},

 

поскольку V представляет собой квадрат отклонения X от ожидаемого значения т. Если нет отклонения, т.е. V = О, то и риска нет, чем больше V, тем больше риск. Возникает вопрос, какой риск описывается вели­чиной V. Это зависит от того, какому риску подвергаются инвесторы в период времени, по которому выбирается статистика.

Для моделирования портфеля важное значение будет иметь величи­на стандартного (среднеквадратичного) отклонения и ковариация двух случайных величин X1 , X2:

V12 = Е{( X1 –т1 )( X2–т2 )}.

Рис. 1. Эффективные портфели

Предположим теперь, что имеется четыре различных портфеля, от­меченных на рис. 1 точками 7, 2,3,4 с координатами mi (i = 1, 2, 3, 4). Портфели, лежащие правее, имеют больший риск. Портфели, которым соответствуют точки, находящиеся выше, имеют больший эффект. Очевидно, что опытный инвестор будет действовать при выборе из двух пор­тфелей Xi и Xj следующим образом: он выберет Xi если выполняются одно из условий:

 

E(Xi)=E(Xj), s (Xi) < s (Xj);

E(Xj)>E(Xj), s (Xi)= s (Xj ).

 

На графике этот выбор означает из первого и второго портфелей пер­вый (точка 1), из четвертого и второго - четвертый портфель (точка 4) В других случаях, когда

E(Xi)=E(Xj), s (Xi) < s (Xj)

каждый инвестор поступит соответственно своим предпочтениям и сво­ей склонности к риску. Однако если из всех возможных вариантов пор­тфелей выбрать все портфели, которые при каждом заданном уровне риска имеют максимальную ожидаемую эффективность (доходность) а при заданном уровне доходности имеют минимальный риск то это подмножество портфелей будет описываться кривой 1.- 4 (см рис 1)

Такие портфели называются эффективными, а кривая 7 - 4 представ­ляет множество эффективных портфелей. Остальные возможные порт­фели представляют собой множество неэффективных портфелей Из двух портфелей лучше тот, который находится ближе к множеству эффектив­ных портфелей. Среди эффективных портфелей инвестор должен выб­рать один, наиболее для него предпочтительный (оптимальный) На рис. 1 эффективными являются портфели 7 и 4, неэффективными - 2 и 3

Добавим теперь портфель с нулевым риском и гарантированной ожидаемой эффективностью m . Для нового множества допустимых портфелей граница эффективности теперь изменится и будет описывать­ся кривой m - 4. Для этого множества портфелей портфель 1 перестал быть эффективным, так как портфель т имеет меньший риск чем пор­тфель 1 при одинаковой норме доходности.

Если инвестор согласен на риск в своем портфеле, то оптимальным для него будет портфель А со значениями риска о и ожидаемой эффек­тивности m Такой портфель можно сформировать, если взять долю s0 / s4 безрисковых вложений и долю (s4-s0)/ s4 вложений из портфеля 4.

Практика показывает, что с увеличением количества видов ценных бумаг в портфеле уменьшается риск инвестиций. Это происходит пото­му, что в портфель включаются ценные бумаги, слабокоррелирован­ные между собой, только в этом случае возможно снижение риска Про­цедура включения в портфель различных видов ценных бумаг, имеющих низкий коэффициент корреляции, называется диверсификацией

При диверсификации риск портфеля снижается только до определен­ного уровня, ниже которого путем диверсификации риск уменьшить нельзя. Таким образом, риск представляет собой сумму диверсифициру­емого и недиверсифицируемого рисков. Диверсифицируемая часть риска представляет собой несистематический риск, а недиверсифицируемая - систематический.

Если задать желаемый для инвестора уровень доходности портфе­ля, то можно поставить задачу выбора такой структуры портфеля, ко­торая при заданном уровне доходности приводила бы к минимальному риску. Математическая постановка такой задачи впервые была сфор­мулирована в 1951 г. Г. Марковицем.

Для решения задачи Г. Марковица статистическими методами тре­буется большой объем данных о рынке ценных бумаг, накопленных за многие годы и отвечающих условиям представительности. На практи­ке, особенно на российском фондовом рынке, который еще только фор­мируется, такие данные получить очень трудно, а подчас и невозмож­но. В настоящее время появились различные эвристические методы для решения подобных задач, дающие псевдооптимальные решения, напри­мер различные генетические алгоритмы. Тем не менее традиционно для принятия решений о формировании портфеля пользуются моделью оценки финансовых активов (Capital Asset Pricing Model - САРМ), пред­ставляющей собой зависимость между эффективностью (доходностью) конкретной ценной бумаги и эффективностью рыночного портфеля (портфеля, содержащего все бумаги, находящиеся на рынке).

В САРМ-модели предполагается, что эффективность ценной бумаги Х линейно зависит от некоторого ведущего фактора F, описывающего эффективность рынка в целом, и в то же время на каждую j ценную бума­гу влияют и специфические для нее факторы, являющиеся случайными величинами е. Тогда

Xj = aj +bj F + ej ,

где aj и bj - некоторые детерминированные величины, а коэффициент bj отражает за­висимость эффективности бумаги от рыночной конъюнктуры, если bj > О, то эффект бумаги аналогичен эффекту рынка, если bj < 0, то эффектив­ность бумаги возрастает, когда эффективность рынка снижается.

Эта модель эффективности ценной бумаги носит название индекс­ной модели У. Шарпа.

Для характеристики конкретной ценной бумаги используются и дру­гие параметры. Если отсчитывать эффективность инвестиций в ценную бумагу от эффективности безрискового вклада r , то параметр

aj = aj - bj r0

 

представляет собой превышение эффективности ценной бумаги над без­рисковой эффективностью (можно считать это некоторой премией за риск). Если aj < 0, то рыночная цена на эту бумагу завышена, и в бли­жайшем будущем она может понизиться; если же aj > 0, то рыночная цена занижена, и в будущем вероятно ее повышение. Следовательно, при прочих равных условиях более предпочтительна бумага с aj > 0.

На западных рынках значения а, b и R2 регулярно рассчитываются для всех ценных бумаг и публикуются вместе с индексами. Пользуясь этой информацией, инвестор может сформировать собственный порт­фель ценных бумаг. На российском рынке профессионалы постепенно тоже начинают использовать а-, b- R2 - анализ. Отдельные инвестици­онные институты рассчитывают а, b и R2 .


Информация о работе «Операции с ценными бумагами»
Раздел: Финансы
Количество знаков с пробелами: 56202
Количество таблиц: 1
Количество изображений: 2

Похожие работы

Скачать
75739
5
0

... ), должна выкупить свои бумаги по номиналу. По соглашению с держателями (владельцами) облигаций выкуп может производиться путем обмена облигаций на собственные акции организации, ценные бумаги других эмитентов, любые другие активы.3 АУДИТ ОПЕРАЦИЙ С ЦЕННЫМИ БУМАГАМИ   3.1 Цель и задачи аудита операций с ценными бумагами   Аудиторская проверка операций с ценными бумагами проводится в целях ...

Скачать
66022
3
0

... полностью или частично направляются на реинвестирование, то на эту сумму делается проводка по дебету счета 06 “Долгосрочные финансовые вложения” и кредиту счета 80. Письмом МФ РФ от 23.12.92 г. №117 “Об отражении в бухгалтерском учете и отчетности операций, связанных с приватизацией предприятия” разработан порядок отражения в бухгалтерском учете операций с акциями. При приобретении акций ...

Скачать
277526
19
5

... 3.     Обзор существующих систем автоматизации back-office; 3. Ориентировочная тема дипломного проекта Учет операций с ценными бумагами. Руководитель Блат И. Д. Содержание 1 Введение 6 2 Предприятие 7 2.1 Характеристика компании и виды оказываемых ...

Скачать
57073
1
0

... особенностей налогообложения таких операций РЕПО. Глава 2. ЦЕННЫЕ БУМАГИ, ДЕНОМИНИРОВАННЫЕ В ВАЛЮТЕ Операции с ценными бумагами являются одними из наиболее сложных вопросов ввиду их специфического порядка обращения. В главе 25 НК РФ установлены особенности определения налоговой базы при налогообложении доходов от реализации ценных бумаг в зависимости от категории. В налоговом учете расходы ...

0 комментариев


Наверх