5. Химические свойства меди.

Строение атома.

Рисунок 2. Схема строения атома меди.

29Cu 1s1 2s2 sp6 3s2 3p6 3d10 4s1

Eионизации 1 = 7.72 эВ

Eионизации 2 = 20.29 эВ

Eионизации 3 = 36.83 эВ

Отношение к кислороду.

Медь проявляет к кислороду незначительную активность, но во влажном воздухе постепенно окисляется и покрывается пленкой зеленоватого цвета, состоящей из основных карбонатов меди:

В сухом воздухе окисление идет очень медленно, на поверхности меди образуется тончайший слой оксида меди:

Внешне медь при этом не меняется, так как оксид меди (I) как и сама медь, розового цвета. К тому же слой оксида настолько тонок, что пропускает свет, т.е. просвечивает. По-иному медь окисляется при нагревании, например при 600-800 0C. В первые секунды окисление идет до оксида меди (I), которая с поверхности переходит в оксид меди (II) черного цвета. Образуется двухслойное окисное покрытие.

Qобразования (Cu2O) = 84935 кДж.

Рисунок 3. Строение оксидной пленки меди.

Взаимодействие с водой.

Металлы подгруппы меди стоят в конце электрохимического ряда напряжений, после иона водорода. Следовательно, эти металлы не могут вытеснять водород из воды. В то же время водород и другие металлы могут вытеснять металлы подгруппы меди из растворов их солей, например: . Эта реакция окислительно-восстановительная, так как происходит переход электронов:

Молекулярный водород вытесняет металлы подгруппы меди с большим трудом. Объясняется это тем, что связь между атомами водорода прочная и на ее разрыв затрачивается много энергии. Реакция же идет только с атомами водорода.

Медь при отсутствии кислорода с водой практически не взаимодействует. В присутствии кислорода медь медленно взаимодействует с водой и покрывается зеленой пленкой гидроксида меди и основного карбоната:

Взаимодействие с кислотами.

Находясь в ряду напряжений после водорода, медь не вытесняет его из кислот. Поэтому соляная и разбавленная серная кислота на медь не действуют. Однако в присутствии кислорода медь растворяется в этих кислотах с образованием соответствующих солей: .

Отношение к галогенам и некоторым другим неметаллам.

Qобразования (CuCl) = 134300 кДж

Qобразования (CuCl2) = 111700 кДж

Медь хорошо реагирует с галогенами, дает два вида галогенидов: CuX и CuX2.. При действии галогенов при комнатной температуре видимых изменений не происходит, но на поверхности вначале образуется слой адсорбированных молекул, а затем и тончайший слой галогенидов. При нагревании реакция с медью происходит очень бурно. Нагреем медную проволочку или фольги и опустим ее в горячем виде в банку с хлором – около меди появятся бурые пары, состоящие из хлорида меди (II) CuCl2 с примесью хлорида меди (I) CuCl. Реакция происходит самопроизвольно за счет выделяющейся теплоты.

Одновалентные галогениды меди получают при взаимодействии металлической меди с раствором галогенида двухвалентной меди, например: . Монохлорид выпадает из раствора в виде белого осадка на поверхности меди.

Оксид меди.

При прокаливании меди на воздухе она покрывается черным налетом, состоящим из оксида меди . Его также легко можно получить прокаливанием гидроксокарбоната меди (II) (CuOH)2CO3 или нитрата меди (II) Cu(NO3)2. При нагревании с различными органическими веществами CuO окисляет их, превращая углерод в диоксид углерода, а водород – в воду восстанавливаясь при этом в металлическую медь. Этой реакцией пользуются при элементарном анализе органических веществ для определения содержания в них углерода и водорода.

Под слоем меди расположен окисел розового цвета – закись меди Cu2O. Этот же окисел получается при совместном прокаливании эквивалентных количеств меди и окиси меди, взятых в виде порошков: .

Закись меди используют при устройстве выпрямителей переменного тока, называемых купроксными. Для их приготовления пластинки меди нагревают до 1020-1050 0C. При этом на поверхности образуется двухслойная окалина, состоящая из закиси меди и окиси меди. Окись меди удаляют, выдерживая пластинки некоторое время в азотной кислоте: .

Пластинку промывают, высушивают и прокаливают при невысокой температуре – и выпрямитель готов. Электроны могут проходить только от меди через закись меди. В обратном направлении электроны проходить не могут. Это объясняется тем, что закись меди обладает различной проводимостью. В слое закиси меди, который примыкает непосредственно к меди, имеется избыток электронов, и электрический ток проходит за счет электронов, т.е. существует электронная проводимость. В наружном слое закиси меди наблюдается нехватка электронов, что равноценно появлению положительных зарядов. Поэтому, когда к меди подводят положительный плюс источника тока, а к закиси меди – отрицательный, то электроны через систему не проходят. Электроны при таком положении полюсов движутся к положительному электроду, а положительные заряды – к отрицательному. Внутри слоя закиси возникает тончайший слой, лишенный носителей электрического тока, - запирающий слой. Когда же медь подключена к отрицательному полюсу, а закись меди к положительному, то движение электронов и положительных зарядов изменяется на обратное, и через систему проходит электрический ток. Так работает купроксный выпрямитель. [6, с.63]

Гидроксиды меди.

Гидроксид меди малорастворимое и нестойкое соединение. Получают его при действии щелочи на раствор соли: . Это ионная реакция и протекает она потому, что образуется плохо диссоциированное соединение, выпадающее в осадок:

Медь, помимо гидроксида меди (II) голубого цвета, дает еще гидроксид меди (I) белого цвета: . Это нестойкое соединение, которое легко окисляется до гидроксида меди (II): .

Оба гидроксида меди обладают амфотерными свойствами. Например, гидроксид меди (II) хорошо растворим не только в кислотах, но и в концентрированных растворах щелочей: , .

Таким образом, гидроксид меди (II) может диссоциировать и как основание:  и как кислота. Этот тип диссоциации связан с присоединением меди гидроксильных групп воды:

Сульфаты.

Наибольшее практическое значение имеет CuSO4*5H2O, называемый медным купоросом. Его готовят растворением меди в концентрированной серной кислоте. Поскольку медь относится к малоактивным металлам и расположена в ряду напряжений после водорода, водород при этом не выделяется: .

Медный купорос применяют при электролитическом получении меди, в сельском хозяйстве для борьбы с вредителями и болезнями растений, для получения других соединений меди.

Карбонаты.

Карбонаты для металлов подгруппы меди не характерны и в практике почти не применяются. Некоторое значение для получения меди имеет лишь основной карбонат меди, который встречается в природе.

Комплексообразование.

Характерное свойство двухзарядных ионов меди – их способность соединятся с молекулами аммиака с образованием комплексных ионов.

Качественные реакции на ионы меди.

Ион меди можно открыть, прилив к раствору ее соли раствор аммиака. Появление интенсивного сине-голубого окрашивания связано с образованием комплексного иона меди [Cu(NH3)4]2+:

Медь интенсивно окрашивает пламя в зеленый цвет.

Пример качественного анализа сплава меди.

Исследуемый объект

Реагент, действие

Осадок

Раствор

Наблюдение

Выводы

Часть сплава

Нагревание с конц. HNO3

Раствор 1 сразу приобрёл зелёную окраску, которая перешла в голубую после охлаждения
Раствор 1

25% NH3, Добавление 1-2 капли

Раствор стал синим Это медный сплав
Часть сплава

HNO3, Сначала растворяют часть стружек в 10 каплях 6М HNO3, а затем добавляют 20-25 капель конц. HNO3, нагревают до полного растворения сплава

Раствор 2 может содержать Cu, Zn, Ni, Cd, Fe, Mn, Al, Pb, Sn, Sb Осадок не выпал

Раствор 2, Ni2+

Диметил-глиоксим Раствор позеленел Ni нет

Fe3+

NH4CNS

Кристаллы окрасились в красный цвет, потом раствор позеленел и выпал чёрный осадок

Есть Fe3+

Cd2+

Дифенил-карбазид Раствор стал красным Есть Cd

Zn2+

Дитизон Фаза дитизона окрасилась в малиновый цвет Есть Zn
Mn

NaBiO3

Ничего не произошло Mn нет

Al3+

Ализарин Раствор стал жёлто-коричневым Al нет
Окси-хинолин Выпал зелёно-жёлтый осадок Al нет
Раствор 2

HCl, H2SO4, добавление

Раствор 3 возможно содержит Sb, Sn Осадок не выпал Pb возможно нет
Раствор 3

H2O2 и NaOH

Осадок 1 может содержать Sb Раствор 4 может содержать Sn

Выпал зелёно-серый осадок

(образовался ос.2 и р-р 2)

Осадок 1

HNO3

Раствор 5 Осадок растворился Sb нет
Раствор 5

NH3, NH4Cl, H2O2

Осадок не выпал
Раствор 4

NH4Cl

Осадок не выпал Sn нет
Раствор 2

I-

Выпал жёлтый осадок, который приобрёл красный оттенок

Есть Pb2+

Выводы:

Проведённый качественный анализ даёт основания считать, что в сплаве содержится медь, цинк, кадмий, железо, свинец. Таким образом этот сплав является латунью. [8]


Информация о работе «Курсовая работа по химии. Медь»
Раздел: Химия
Количество знаков с пробелами: 31540
Количество таблиц: 2
Количество изображений: 4

Похожие работы

Скачать
23206
4
23

... 5`-р-(диаминоадамантил)-о-изопропилиденаденозинмонофосфата. 2. ОБЗОР ЛИТЕРАТУРЫ 2.1. ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ АДАМАНТАНА Химия адамантана и его производных является сравнительно молодым разделом органической химии (со времени обнаружения адамантана в нефтях прошло примерно 70 лет). В то же время, наблюдается постоянный рост числа исследований в этой области, особенно начиная с 70-х годов ...

Скачать
17652
0
0

... не только анионные, но и катионные комплексы. Так, в кислой среде существует катионный аквакомплекс [Al(OH2)6]3+, а в щелочной - анионный гидрокомплекс и [Al(OH)6]3-. В виде простого вещества алюминий - серебристо-белый, довольно твердый металл с плотностью 2,7 г/см3 (т.пл. 660оС, т. кип. ~2500оС). Кристаллизуется в гранецентрированной кубической решетке. Характеризуется высокой тягучестью, ...

Скачать
72576
10
3

... дохода (валовой доход минус переменные затраты) для определения размера торговой надбавки. Анализ издержек обращения направлен на выявление возможностей повышения эффективности работы торгового предприятия за счет более рационального использования трудовых, материальных и финансовых ресурсов в процессе осуществления актов купли-продажи товаров и организации торгового обслуживания потребителей. ...

Скачать
44668
1
0

... ;à НbО2- + ННb + СО2 Кислотно-основные свойства лигандов, связанных с комплексообразователем, часто выражены более ярко, чем кислотно-основные свойства свободных лигандов.     4.  Комплексные соединения в аналитической химии 4.1 Качественный анализ катионов Первая группа катионов В первую аналитическую группу катионов входят ионов калия K+, натрия Na+, аммония NH4+ и магния Mg2+. ...

0 комментариев


Наверх