3. Объекты исследования

 Натуральный каучук

 

 

Натуральный каучук (НК) – биополимер изопреноидной природы, типичный представитель широкого класса изопреноидов растительного происхождения, он вырабатывается в растениях, произрастающих в разных регионах мира (бразильская гевея, американская гваюла, среднеазиатский кок-сагыз) [1], представляет собой на 98 – 100% стереорегулярный циз-полиизопрен. Технические характеристики использованного в данной работе натурального каучука представлены в таблице 3.1

Таблица 3.1

Технические характеристики НК RSS1

Загрязнённость, определённая на сите 45 мкм, %, не более Начальная пластичность по Уоллесу, не менее Показатель сохранения пластичности (ПСП), не менее Содержание летучих веществ, %, не более Содержание золы, %, не более
0,5

33-47

тип 40

40 1,0 1,0

СКИ-3

 

Изопреновый каучук получают путем стереоспецифической полимеризации изопрена в растворе на катализаторах Циглера-Натта при температуре 30-

50 оС. Структура и химический состав:

Содержание цис-1,4-звеньев

транс-1,4 - 0-4%

Содержание Звеньев 1.2 и 3.4 в сумме 1-5%

Общая непредельность - 94-98%

Средневязкостная масса Мŋ – (350-1300)*103. Физические свойства СКИ подобны свойствам НК. Изопреновый каучук кристаллизуется при -25оС. Наименьшее относительное удлинение, при котором наблюдается образование кристаллической фазы при 20оС, составляет 300-400%. Параметр растворимости δр равен 16.8 (МДж/М3)1/2 [42]

Для изучения влияния биологически активных систем на комплекс свойств синтетических каучуков и резин на их основе были выбраны следующие продукты:

Липидный остаток биомассы Rhodobacter capsulatus Из биомассы Rhodobacter сapsulatus (представитель аноксигенных фотосинтезирующих микроорганизмов) направленно получают бактериопурпурин для медицинских целей. Кроме того, биомасса Rhodobacter capsulatus может быть источником других ценных биологически активных соединений.


Липидный остаток

Выход на сухую биомассу 6.45%

 
Бактериопурпурин

Выход на сухую биомассу 0.80%

 
 

 Биотехнологический способ получения бактериопурпурина позволяет получать это ценное вещество с выходом не превышающим 1% на сухую биомассу. При этом образуются липидные отходы, которые не используются и могут быть источниками ценных БАС, в частности, ВЖК (насыщенных и ненасыщенных).

После проведения качественного анализа липидного остатка, на основании сравнения хроматографической подвижности, составляющих его веществ с хроматографическими характкристиками стандартных образцов и с учетом литературных данных, был сделан вывод о составе липидного отхода биотехнологического процесса переработки биомассы Rhodobacter capsulatus.

 Идентификацию компонентов в липидном остатке Rhodobacter capsulatus проводили на основании результатов ТСХ в сравнении со свидетелями (образцы свободных жирных кислот и ацилглицеридов, токоферола, фитола) и на основании литературных данных.

На хроматограмме обнаружили: каротиноидные углеводороды, токоферолы, кислотосодержащие каротиноиды, высшие жирные кислоты, высшие жирные спирты. Для ТСХ анализа использовали систему петролейный эфир – этилацетат, 9:1.

Проведенное исследование, направленное на обнаружение полярных липидов показало их отсутствие в составе липидного остатка, что подтверждает гидролитическое расщепление фосфолипидов при щелочной обработке биомассы, в ходе которой выделяется бактериопурпурин, где в качестве образца сравнения использовали коммерческий лецитин, а детекцию проводили с помощью обработки хроматограммы, молибденовым синим [43].

Для количественного анализа других компонентов липидного остатка было проведено разделение компонентов смеси методом колоночной адсорбционной хроматографии на силикагеле. При использовании в качестве элюента бензола получили концентраты, обогащенные БАС различной природы.

Таблица 3.2 Процентный состав выделенных концентратов из липидного остатка биомассы Rh. Cap.
Состав концентратов Содержание, %
каротиноидные углеводороды 3.9
токоферолы 5

кислородосодержащие каротиноиды и высшие жирные

кислоты (ВЖК)

65.5
ВЖК 5
ВЖК и фитол 19.7

 

Далее проведенное при помощи ТСХ и ГЖХ фракционирование концентратов, позволило установить преобладающие ВЖК после предварительной их этерификации метиловым спиртом (табл. 3.3). На основании ГЖХ анализа можно сделать вывод, что липидный отход обогащен ВЖК, состав которых после переработки биомассы остался неизменным, а количество практически не уменьшилось. Следовательно, липидный отход является ценным источником БАС.

Выделение фракции, кислородосодержащих каротинойдов показало, что преимущественно преобладают в липидном остатке сфероидены. Общий, выход которого, от липидного остатка составил 14%.

Таблица 3.3

Данные ГЖХ анализа метиловых эфиров ВЖК липидного остатка биомассы Rhodobacter capsulatus.

пика

Обозначение

ВЖК

Название

ВЖК

Время

удерживания

мин

Содержание

ВЖК, %*

1

Cl4:0

миристиновая 1.5 0.98
2 С16:0 пальмитиновая 3.7 3.5
3 Cl6:l пальмитолеиновая 5.2 3.9
4 Cl8:0 стеариновая 6.8 2.2
5 C18:l олеиновая 8.2 90.1

*-Среднее из трех измерений

Выбор белковой компоненты для модификации синтетического полиизопрена был обусловлен тем, что данные белки имеют состав и содержание аминокислот, близкий к составу белка НК.

Соевый белковый изолят PROFAM 974

Профам 974 – изолированный соевый белок – растворимый диспергируемый продукт, разработанный для использования в пищевых системах, где требуется высокофункциональный белок.

 

Таблица 3.4 Химический состав соевого изолята PROFAM 974

Химический состав, %

Влага, максимум 6,5
Белок, минимум 90
жир (по экстрагированию эфиром) 1
зола, максимум 5
рН (при диспергировании в воде 1:10) 6,8 - 7,3

Таблица 3.5

Микробиологический состав соевого изолята PROFAM 974
Микробиологические данные
Общая бактериальная обсемененность, максимум 30000/г
Сальмонелла (класс П) отрицательно
Е Coli отрицательно

 

 

Таблица 3.6

Основные аминокислоты соевого изолята PROFAM 974

 

Аминокислоты (г/100г белка)
Лизин 6,4
Треонин 4.4
Лейцин 7,8
Изолейцин 4,8
Валин 4,9
Триптофан 1,3
Фенилаланин 5,1
Тирозин 3,4
Метионин 1,3
Цистин 1,4
Гистидин 2,7
Таблица 3.7

Минеральные вещества соевого изолята PROFAM 974

Минеральные вещества (Мг/100г)
Натрий 1300
Калий 150
Кальций 100
Фосфор 850
Железо 15
Магний 50
  Мука соевая дезодорированная полуобезжиренная

Мука соевая дезодорированная полуобезжиренная (ГОСТ 3898-56) производится из генетически немодифицированной сои, повышает биологическую и питательную ценность любого продукта, обогащая его белками, витаминами A, B1, B2, РР, жиром, лецитин. В пищевых системах соевая мука обладает уникальными функциональными свойства и (образование эмульсий, сорбция жира и воды, пенообразующая способность, гелеобразование).

Таблица 3.8

Химический состав соевой муки, %

Белок (не менее) 43
Жир (не более) 8
Влага (не более) 9
Углеводы (не более) 28
Диетическая клетчатка 16
  Таблица 3.9

Аминокислотный состав соевой муки

Аминокислоты (г/100г протеина)
Лизин 6,2
Треонин 4,3
Лейцин 7,9
Изолейцин 4,2
Валин 4,6
Триптофан 1,2
Фенилалнин 5,1
Тирозин 4,1
Метионин 1,5
Цистин 1,4
Гистидин 2,4
  Таблица 3.10

Количество изофлавонов в соевой муке

Изофлавоны (мкг/г)
Дайдзеин 2100
Генистеин 1850
Глицетеин 221
    Таблица 3.12

Микробиологический анализ соевой муки

Микробиологический анализ
Станд. чашечный подсчет, max 25000/г
Сальмонелла Отрицат
Е. Coli Отрицат.

Мука соевая дезодорированная полуобезжиренная зарегистрирован в Минздраве РФ и имеет гигиенический сертификат.

 

Ингредиенты резиновых смесей:

Сера - основной вулканизующий агент. Представляет собой желтый порошок высокой степени дисперсности, α=3,0 кг/м3, tпл=114°C, ГОСТ 127-82

Оксид цинка. Белый порошок. Растворяется в минеральных кислотах, уксусной кислоте, водных щелочах, не растворяется в воде. Является активатором вулканизации. d=5,47-5,56 г/см , tпл=1800°С, М=80. ГОСТ 161-69

Стеариновая кислота (С17Н35СООН)

Порошок или хлопья белого, серого или светло-коричневого цвета в зависимости от сорта: α=1060-1100 кг/м3, tпл=324,4°C. Является активатором вулканизации в комплексе оксидом цинка.

Для вулканизации резиновой смеси использовали серную вулканизующую систему.

Сульфенамид Т (ТББС).

N-третбутил-2-бензтиазолсульфенамид.

Предназначен для использования в качестве ускорителя серной вулканизации. Относительная молекулярная масса 238,39. Порошок светло-желтого цвета. Температура плавления 109°С.

Для проведения ряда физико-химических исследований использовался петролельный эфир – бесцветная, легковоспламеняющаяся жидкость, представляющая собой самую низкокипящую фракцию бензина. Это смесь углеводородов не содержащая ароматических соединений. Состав и свойства непостоянны. Плотность около 685 кг/м3 ; плотность пара по воздуху около 2,5; в воде не растворим.

Ацетон - диметилкетон, пропанон . СН3СОСН3 – бесцветная легковоспламеняющаяся жидкость с характерным запахом. Молекулярный вес 58,08; плотность 790,8 кг/м3; температура плавления -95,35оС; температура кипения 56,24оС, растворимость в воде неограниченная.

Для вулканизации резиновых смесей использовали серную вулканизационную систему. В качестве ускорителя применялся третбутил-2-бензтиазолилсульфенамид(ТББС). Состав резиновой смеси приведен в табл.3.13

Таблица 3.13

Состав резиновой смеси, масс. ч. (ИСО 1658)

Каучук 100
Оксид цинка 6
Стеариновая кислота 0,5
Сера 3,5
Сульфенамид Т 0,7
БАС переменно


Информация о работе «Модификация биологически активными системами синтетического полиизопрена»
Раздел: Химия
Количество знаков с пробелами: 113091
Количество таблиц: 44
Количество изображений: 16

0 комментариев


Наверх