5. Физические свойства.

Техническая медь — металл красного, в изломе розового цвета, при просвечивании в тонких слоях — зеленовато-голубой. Имеет гранецентрированную кубическую решетку с параметром а = 0,36074 нм, плотность 8,96 кг/м3 (20° С). Ионные радиусы меди (в нм) приведены ниже:

По Белову и Бокию По Гольдшмидту По Полингу

Cu+

0,098 0,095 0,096

Cu2+

0,080 0,070

Основные физические свойства меди

Температура плавления, °С  1083

Температура кипения, °С 2600

Теплота плавления, кДж/г-ат. 0,7427

Теплота испарения, кДж/г-ат.  17,38

Удельная теплоемкость, Дж/(г.град) (20°С) 0,022

Теплопроводность, Дж/(м.град.с) (20°С) 2,25-10-3

Электрическое сопротивление, Ом.м (20°С) 1,68-Ю-4

Удельная магнитная восприимчивость, 0,086.10-6

абс. эл.-магн. ед./г (18 °С)

Медь — вязкий, мягкий и ковкий металл, уступающий только се­ребру высокой теплопроводностью и электропроводностью. Эти ка­чества, а также пластичность и сопротивление коррозии обусловили широкое применение меди в промышленности.

6. Химические свойства.

Медь — электроположительный металл. Относительную устойчи­вость ее ионов можно оценить на основании следующих данных:

Cu2+ + e → Cu+ E0 = 0,153 B,

Сu+ + е → Сu0 E0 = 0,52 В,

Сu2+ + 2е → Сu0 E0 = 0,337 В.

Медь вытесняется из своих солей более электроотрицательными эле­ментами и не растворяется в кислотах, не являющихся окислителя­ми. Медь растворяется в азотной кислоте с образованием Cu(NO3)2 и оксидов азота, в горячей конц. H2SO4 — с образованием CuSO4 и SO2. В нагретой разбавленной H2SO4 медь растворяется только при проду­вании через раствор воздуха.

Стандартные окислительно-восстановительные потенциалы ионов меди в водных растворах по отношению к водородному электроду при 25° С приведены в табл. 2.

Таблица 2.

Стандартные окислительно-восстановительные потенциалы ионов меди.

Уравнение полуреакции

EL В

HCuO2- + ЗН+ + е = Сu+ + 2Н2О

1,73

CuO22-+ 4Н+ + е = Сu+ + 2Н2О

2,51

HCuO2- + ЗН+ + 2е = Сu0 + 2Н2О

1,13

СuО22-+ 4Н+ + 2е = Сu0 + 2Н2О

1,52

2Сu2+ + Н2О + 2е = Сu2О + 2Н+

0,20

2НСuО2- + 4Н+ + 2е = Сu2О + ЗН2О

1,78

2CuO22- + 6Н+ +2е = Сu2О + ЗН2О

2,56

СuО + 2Н+ + е = Сu+ + Н20

0,62

Сu2+ + Вr -  + е = СuВr

0,64

Сu2+ + Сl- + е = CuCl

0,54

Сu2+ + I- + е = CuI

0,86

Cu(NH3)42+ + е = Cu(NH3)2+ + 2NH3

-0,01

Cu(NH3)2+ + е = Сu0 + 2NH3

-0,12

Cu(NH3)42+ + 2e = Cu0 + 4NH3

-0,07

Химическая активность меди невелика, при температурах ниже 185°С с сухим воздухом и кислородом не реагирует. В присутствии влаги и СО2 на поверхности меди образуется зеленая пленка основного карбоната. При нагревании меди на воздухе идет поверхностное окисление; ниже 375°С образуется СuО, а в интервале 375—1100°С при неполном окислении меди — двухслойная окалина (СuО + Сu2О). Влажный хлор взаимодействует с медью уже при комнатной температу­ре, образуя хлорид меди(II), хорошо растворимый в воде. Медь реаги­рует и с другими галогенами.

Особое сродство проявляет медь к сере: в парах серы она горит. С водородом, азотом, углеродом медь не реагирует даже при высоких температурах. Растворимость водорода в твердой меди не­значительна и при 400°С составляет 0,06 г в 100 г меди. Присутствие водорода в меди резко ухудшает ее механические свойства (так назы­ваемая "водородная болезнь"). При пропускании аммиака над раска­ленной медью образуется Cu2N. Уже при температуре каления медь подвергается воздействию оксидов азота: N2O и NO взаимодействуют с образованием Сu2О, a NO2 — с образованием СuО. Карбиды Сu2С2 и СuС2 могут быть получены действием ацетилена на аммиачные растворы солей меди. Окислительно-восстановительные равновесия в растворах солей меди в обеих степенях окисления осложняются легкостью диспропорционирования меди(I) в медь(0) и медь(II), поэтому комплексы меди(I) обычно образуются только в том случае, если они нерастворимы (например, CuCN и Cul) или если связь металл—лиганд имеет ковалентный характер, а пространственные факторы благоприятны.

Исследование комплексных соединений меди(П) может быть прове­дено методами протонного резонанса и ЭПР. Боль­шое число работ по ЭПР комплексных соединений меди(II) обуслов­лено устойчивостью этого состояния окисления меди и относительно узкими линиями спектра ЭПР меди(П) в широком интервале темпе­ратур.

Спектры ЭПР комплексов меди(II) в растворах часто имеют хорошо разрешенную сверхтонкую структуру из четырех линий от ядер 63 Сu и 65Сu, ядерный спин которых 3/2.Так как магнитные моменты ядер 63Сu и 65Сu несколько различаются, то в случае узких линий сверхтонкой структуры, например для серосодержащих комплексов, в спектрах ЭПР видны разрешенные линии от ядер 63Сu и 65Сu. При интерпретации спектров ЭПР необходимо учитывать сосуществование в растворах, как правило, нескольких комплексов. Ниже кратко рассматриваются химические свойства меди в различных степенях окисления.

Медь(I). Комплексы меди(I) обычно имеют (в зависимости от при­роды лиганда) линейное или тетраэдрическое строение. Ионы меди(I) содержат десять 3d-электронов и обычно образуют четырех координи­рованные тетраэдрические структуры типа [CuCl4]3-. Однако с сильно­основными высокополяризованными или легко поляризующимися лигандами медь(I) образует двухкоординированные линейные комплексы.

В соединениях меди(I) ион имеет конфигурацию 3d'°, поэтому они диамагнитны и бесцветны. Исключение составляют случаи, когда ок­раска обусловлена анионом или поглощением в связи с переносом заря­да. Относительная устойчивость ионов Сu+ и Сu2+ определяется природой анионов или других лигандов. Примерами устойчивого в воде соединения меди(I) являются малорастворимые CuCl и CuCN, соли Cu2SO4 и других оксоанионов можно получить в неводной среде. В воде они быстро разлагаются, образуя медь металлическую и соли меди(I). Неустойчивость солей меди(I) в воде обусловлена отчасти повышенными значениями энергии решетки и энергии сольватации для иона меди(П), вследствие чего соединения меди(I) неустойчивы.

Оксид меди(I) Сu2О красного цвета, незначительно растворяется в воде. При взаимодействии сильных щелочей с солями меди(I) выпадает желтый осадок, переходящий при нагревании в осадок красного цвета, по-видимому, Cu2O. Гидроксид меди(I) обладает слабыми основны­ми свойствами, он несколько растворим в концентрированных раство­рах щелочей.

Медь(II). Двухзарядный положительный ион меди является ее наиболее распространенным состоянием. Большинство соединений меди(I) очень легко окисляется в соединения двухвалентной меди, но дальнейшее окисление до меди(Ш) затруднено.

Конфигурация 3d9 делает ион меди(II) легко деформирующимся, благодаря чему он образует прочные связи с серосодержащими реаген­тами (ДДТК, этилксантогенатом, рубеановодородной кислотой, дитизоном). Основным координационным полиэдром для двухвалентной меди является симметрично удлиненная квадратная бипирамида. Тетраэдрическая координация для меди(П) встречается довольно редко и в соединениях с тиолами, по-видимому, не реализуется.

Большинство комплексов меди(II) имеет октаэдрическую структуру, в которой четыре координационных места заняты лигандами, распо­ложенными к металлу ближе, чем два других лиганда, находящихся выше и ниже металла. Устойчивые комплексы меди(II) характери­зуются, как правило, плоскоквадратной или октаэдрической конфи­гурацией. В предельных случаях деформации октаэдрическая конфигу­рация превращается в плоскоквадратную. Большое аналитическое при­менение имеют внешнесферные комплексы меди.

СuО встречается в природе и может быть получен при накали­вании металлической меди на воздухе, хорошо растворяется в кисло­тах, образуя соответствующие соли.

Гидроксид меди(II) Сu(ОН)2 в виде объемистого осадка голубого цвета может быть получен при действии избытка водного раствора щелочи на растворы солей меди(II). ПР(Сu(ОН)-) = 1,31.10-20. В воде этот осадок малорастворим, а при нагревании переходит в СuО, отщепляя молекулу воды. Гидроксид меди(II) обладает слабо выраженными амфотерными свойствами и легко растворяется в водном растворе аммиака с образованием осадка темно-синего цвета. Осажде­ние гидроксида меди происходит при рН 5,5.

Последовательные значения констант гид­ролиза для ионов меди(II) равны: рК1гидр = 7,5; рК2гидр = 7,0; рК3гидр = 12,7; рК4гидр = 13,9. Обращает на себя внимание необычное соотно­шение pK1гидр > рК2гидр. Значение рК = 7,0 вполне реально, так как рН полного осаждения Сu(ОН)2 равно 8—10. Однако рН начала осаждения Сu(ОН)2 равно 5,5, поэтому величина рК1гндр = 7,5, очевидно, завышена. Гидролиз ионов меди(II) в водных растворах протекает по схеме:

Сu2+ + n Н20 = Cu(OH)n2-n+ n Н+; (n = 1; 2).

1-я и 2-я константы гидролиза равны 109 и 1017 соответственно и не зависят от концентрации меди в пределах 4-1 0"4 — 1 М.

Медь(III). Доказано, что медь(III) с конфигурацией 3d8 может существовать в кристаллических соединениях и в комплексах, обра­зуя анионы — купраты. Купраты некоторых щелочных и щелочнозе­мельных металлов можно получить, например, нагреванием смеси ок­сидов в атмосфере кислорода. КСuО2 — это диамагнитное соединение голубовато-стального цвета.

При действии фтора на смесь КСl и СuСl2 образуются светло-зе­леные кристаллы парамагнитного соединения К3СuF6.

При окислении щелочных растворов меди(II), содержащих периодаты или теллураты, гипохлоритом или другими окислителями обра­зуются диамагнитные комплексные соли состава K7[Cu(IO6)2].7H2O. Эти соли являются сильными окислителями и при подкислении выде­ляют кислород.

Соединения меди(Ш). При действии спиртового раствора щелочи и пероксида водорода на охлажденный до 50° спиртовой раствор хло­рида меди(II) выпадает коричнево-черный осадок пероксида меди СuО2. Это соединение в гидратированной форме можно получить при действии пероксида водорода на раствор соли сульфата меди, содер­жащего в небольших количествах Na2CO3. Суспензия Сu(ОН)2 в раст­воре КОН взаимодействует с хлором, образуя осадок Сu2О3 красного цвета, частично переходящий в раствор.


Информация о работе «Химия меди»
Раздел: Химия
Количество знаков с пробелами: 36279
Количество таблиц: 6
Количество изображений: 0

Похожие работы

Скачать
31540
2
4

... к отрицательному полюсу, а закись меди к положительному, то движение электронов и положительных зарядов изменяется на обратное, и через систему проходит электрический ток. Так работает купроксный выпрямитель. [6, с.63] Гидроксиды меди. Гидроксид меди малорастворимое и нестойкое соединение. Получают его при действии щелочи на раствор соли: . Это ионная реакция и протекает она потому, что ...

Скачать
58094
1
6

... Ж + d —> g. В интервале концентраций 0,10—0,16% С оно приводит к полному затвердеванию, а в интервале 0,16—0,50% С кристаллизация завершается при охлаждении до температуры линии IE. В железоуглеродистых сплавах с 0,5—4,26% С кристаллизация начинается с выделения g-раствора также в виде дендритов. Стали полностью затвердевают в интервале температур, ограниченном линиями ВС и IE, приобретая ...

Скачать
442397
6
13

... с кислородом, восстановлением - отнятие кислорода. С введением в химию электронных представлений понятие окислительно-восстановительных реакций было распространено на реакции, в которых кислород не участвует. В неорганической химии окислительно-восстановительные реакции (ОВР) формально могут рассматриваться как перемещение электронов от атома одного реагента (восстановителя) к атому другого ( ...

Скачать
99671
6
0

... ходом процесса. Через 3 минуты внесите в одну из пробирок раствор хлорида натрия. Что вы наблюдаете? Проведите анализ опытов а) и б).   Глава 2. Методика изучения растворов. Теория растворов – одна из ведущих теорий курса химии. Причины важности темы кроется не только в том, что она имеет большое практическое значение, но и прежде всего ...

0 комментариев


Наверх