5.  Растровая электронная микроскопия как метод исследования поверхностей адгезионного контакта и разрушения

5.1. Теоретические основы метода

Большое разнообразие процессов взаимодействия элек­тронов с веществом делает возможным ис­пользовать электроны для изучения разных характери­стик вещества. Основной характеристикой электронов, которая определяет характер их взаимодействия с веществом и, следовательно, характер получаемой инфор­мации о веществе, является скорость электронов или, точнее, их кинетическая энергия.

С помощью электронных линз можно получить сфо­кусированный пучок электронов на поверхность объекта (электронный зонд). Получаемая при этом информация будет относиться к ограниченному участку поверхности (или объему) объекта. Электронно-зондовые приборы по существу могут давать микроскопические изображе­ния, контраст которых обусловлен тем или иным эффектом взаимодействия электронов зонда с объектом (характеристическое рентгеновское излучение, упруго рас­сеянные или отраженные электроны и др.), а разрешаю­щая способность обусловлена размером зонда и об­ластью, в которой генерируется то или иное излучение[8].

На рис.20 показаны размеры областей объекта, относящихся к разным эффектам взаимодействия элек­тронного луча с веществом.

Рис. 20. Области возбуждения в объекте разных процессов взаимодействия электронов с веществом (металл), используемых в электронно-оптических при­борах для анализа состава или микроструктуры (а), и те же области, но при разной энергии электронов зонда (б):

1—падающий пучок электронов; 2 — поверхность объекта (мишень); 3—пер­вичное возбуждение рентгеновских лучей; 4 — граница возбуждения рентге­новских лучей торможения; 5—область возбуждения вторичного (флюоресцентного) рентгеновского излучения; 6 — область рассеяния рентгеновских лу­чей и дифракция Косселя; 7—ток образца; 8 — возможное разрешение для рентгеновского микроанализатора (Rх); 9—диаметр зонда; 10 — область, от которой регистрируются ОЖЕ- электроны: 11 — ВЭ и РЭ- области, от которых регистрируются вторичные и упруго рассеянные электроны V1; V2 — области возбуждения при разном ускоряющем напряжении; V1> V2 [8]

Наиболее универсальное значение имеют регистра­ция вторичных электронов и регистрация отраженных (или «рассеянных обратно») электронов. Те и другие электроны улавливаются коллектором, установленным возле образца, преобразуются в электрический сигнал, который усиливается и затем направляется к электрон­но-лучевой трубке, где он модулирует яркость электрон­ного луча, строящего изображения на экране этой труб­ки.

 

5.2. Устройство и работа растрового электронного микроскопа

Растровый электронный микроскоп (РЭМ), как и традиционный микроскоп, имеет линзовую систе­му, но функция этой системы состоит в том, чтобы получить пучок электронов предельно малого се­чения (зонд), обеспечивающий достаточно большую ин­тенсивность ответного сигнала от участка объекта, на который попадает этот пучок.

Электронный пучок формируется в электронной пушке (рис.21). Между катодом и анодом создаётся высокое напряжение (100-200 кВ) и электроны начинают вырываться с разогретой поверхности катода. Под действием высокого напряжения электроны разгоняются и проходят через анодную сетку. Далее пучок электронов проходит через систему электронных линз. Электронные линзы представляют собой индукционные катушки которые фокусируют и отклоняют поток электронов (зонд).

Рис. 21. Принципиальная схема электронной пушки

После взаимодействия потока электронов с образцом возникаю вторичные (ВЭ) и упруго отражённые электроны (ОЭ), Оже-электроны, рентгеновское излучение. Для РЭМ представляют интерес ВЭ и ОЭ, они регистрируются коллектором электронов (рис. 22). От того же генератора развертки луча (или генера­тора сканирования, смотри рис.23) работает катодно-лучевая (телевизионная) трубка, яркость электронного луча этой трубки модулируется сигналом от коллектора электронов, подаваемого через усилитель видеосигнала[8].

Рис. 22. Устройство для регистра­ции вторичных и отраженных элект­ронов:

1—сетка; 2—сцинтиллятор; 3— светопровод ; 4— фотокатод или фо­тоэлектронный умножитель; 5—изо­лятор; 6 — металлический стакан;

А—пучок падающих (первичных) электронов; Б — поверхность объ­екта; В — коллектор

Разного рода сигналы представляют информацию об особенностях соответствующего участка объекта. Размер этого уча­стка (по порядку величины) определяется сечением зонда, который в существующих конструкциях растро­вых электронных микроскопов может достигать 10—100 Å.

Рис. 23. Принципиальная схема растрового электронного микроскопа (а) и схема системы объектива с малым отверстием нижнего полюсного наконечника (б) 1—нижний полюсный нако­нечник; 2—объективная ди­афрагма: 3—стигматор;

4— отклоняющие катушки для сканирования

Чтобы получить информацию о микроструктуре дос­таточно большой области, которая представляла бы ха­рактерную структуру объекта, ответственную за интере­сующие нас макроскопические физические или механи­ческие свойства, зонд заставляют обегать (сканировать) заданную площадь объекта по заданной программе (движется луч по строчкам, образующим квадрат, круг и т. д.)[8].

Масштаб изображения на экране катодно-лучевой трубки оп­ределяется отношением размера сканирования на поверхности объекта и размера изображения (растра) на экране. Уменьшение размера участка сканирования при­водит к росту увеличения изображения. Предельные уве­личения в современных конструкциях РЭМ достигают 150000—200000. Разрешающая способность зависит от вида используемого сигнала и вида объекта. Наименьшие значения разрешаемого расстояния 70—100 Å при использовании эффекта эмиссии вторичных электронов. При любом виде используемого для выявления микроструктуры сигнала характерным является чрезвычайно большая глубина резкости вследствие очень малой апертуры (практически, параллельности) электронного зон­да. Глубина резкого изображения объекта оказываем всегда не меньшей, чем размер изображаемого участка в плоскости. Если линейный размер экрана около 100 мм, то при увеличении 10000 изображаемое поле объекта »10 мкм, примерно такой же будет и глубина резкого изображения объекта (»1 мкм)[1]. Устройство электронно-оптической части и камеры объекта РЭМ типа «Стереоскан» показаны на рис. 23 б.

 

5.3.     Применение растровой электронной микроскопии в исследованиях адгезионных соединений

Растровая электронная микроскопия нашла применение при исследовании адгезионных соединений. С помощью РЭМ изучают характер разрушения адгезионных систем (адгезионный, когезионный или смешанный), поверхности субстратов, швы клеевых соединений, прорастание трещин в материалах. Вся эта информация необходима при анализе адгезионных соединений.

Ниже приведены электронно-микроскопические снимки, полученные растровым электронным микроскопом:

Рис. 21. Разрушение адгезионных соединений эпоксидное связующее — высо­копрочное органическое волокно ВНИИВЛОН:

а — конец волокна, выдернутого из соединения; б — отверстие в смоле после выдерги­вания волокна

Рис.22. Вид моноволокна после отслоения от резины

Рис.23. Поперечный срез клеевого соединения древисины

Рис. 24. Поперечные срезы волокон:

а- вискозное, б- высокопрочное вискозное, в- капрон


Информация о работе «Структура и адгезионные свойства отверждённых эпоксидных смол»
Раздел: Химия
Количество знаков с пробелами: 106946
Количество таблиц: 15
Количество изображений: 34

Похожие работы

Скачать
153271
6
6

... от структуры силикатных стёкол, и способно выдерживать умеренные концентрации катионов (например, натрий до 0,1%), не увеличивая электропроводимость. Боратное стекло отвечает требованиям герметизации полупроводниковых приборов: свободно от щелочных металлов, уплотняется (спаивается) при температуре до 800С, относительно инертно и водонепроницаемо, имеет регулируемые коэффициенты температурного ...

0 комментариев


Наверх