ИЗМЕРЕНИЯ МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ ИДИСПЕРСИИ СЛУЧАЙНОГО ПРОЦЕССА

19534
знака
0
таблиц
7
изображений

2. ИЗМЕРЕНИЯ МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ ИДИСПЕРСИИ СЛУЧАЙНОГО ПРОЦЕССА

Математическое ожидание и дисперсия случайного процес­са — основные числовые вероятностные характеристики, измере­ние которых играет большую роль в практике научных исследова­ний, управления технологическими процессами и испытаний.

При измерении математического ожидания результатом из­мерения является среднее по времени или по совокупности мгно­венных значений реализации исследуемого случайного процесса. Усреднение по времени применяется на практике существенно чаще, чем усреднение по совокупности, поскольку работать с од­ной реализацией удобнее и проще, чем с совокупностью. На рис. 3 приведена структурная схема устройства, реали­зующего алгоритм

t

M* [X (t)]= 1/T xk (t) dt.

t-T


На рисунке Д—преобразователь измеряемой величины в электрический сигнал (датчик); НП — нормирующий преобра­зователь, превращающий входной сигнал в стандартный по виду и диапазону значений; И — интегратор; УС — устройство сопря­жения, обеспечивающее согласование выхода интегратора со входами цифрового вольтметра и регистрирующего прибора;

ЦИП — цифровой прибор (например, цифровой вольтметр);

РП—регистрирующий прибор (самопишущий прибор).

Для оценки среднего квадратичeского значения погрешности, обусловленной конечностью объема выборочных данных,

можно пользоваться следующими соотношениями:

1/2

 =[2D[X(t)]  k/T]

M

при усреднении по времени T и


1/2

 =[D[X(t)]/N]

M


при усреднении по совокупности N. Здесь D[X (t)]—дисперсия процесса X(t), а  k — интервал корреляции. Дисперсия случайного процесса характеризует математиче­ское ожидание квадрата отклонений мгновенных значений реали­зации случайного процесса от математического ожидания. Таким образом,

T 2

D[X(t)]= lim 1/T  [xk (t)-[X(t)]] dt

T 0

или

N 2

D[X(t)]= lim 1/N  [xi(t)-[X(t)]] dt

N i=1

Возможны различные варианты построения устройств для измерения дисперсии случайного процесса — дисперсиометров. На рис. 4 приведена структурная схема средства измерений дисперсии случайного процесса, т. е. работающего согласно вы­ражению

t t 2

D* [X(t)]=1/T  [xk (t)- 1/T1  xk (t)dt] dt

t-T t-T1

На рисунке НП — нормирующий преобразователь; И1 и И2 — интеграторы; ВУ— вычитающее устройство; КУ— квадратирующее устройство; УС — устройство сопряжения; ЦИП — цифро­вой прибор; РП — регистрирующий прибор.

Средняя квадратическая погрешность из-за конечности объема выборочных данных о мгновенных значениях Х (t) может быть определена с помощью соотношений

2 1/2

 =[2D[X (t)]  k/T]

M


, где D[X2 (t)]— дисперсия Х (t); T—время усред­нения.

При усреднении по совокупности N реализаций

2 1/2

 =[D[X (t)] /N]

D


3. ИЗМЕРЕНИЕ ФУНКЦИЙ РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ

Одномерная интегральная функция распределения вероятно­сти F (X) равна вероятности того, что мгновенное значение про­извольной реализации в произвольный момент времени меньше установленного уровня, т. е. Xi (ti)  X. Функция F (X) определя­ется как предел выборочного среднего:


F (X)= lim Sd [ [x (t) ,X]],

d


1 при x (t)  X

Где [x(t) ,X]=

0 при x (t) > X


Поскольку интегральные F (X) и дифференциальные w (X) функции распределения вероятности связаны между собой со­отношениями

X

w (X) =(dF (X))/dX ; F (X)=  w (X) dX

-

справедливо выражение

w (X) = lim ((F(X+X)-F (X))/X)= lim ((Sd [[x(t) ,X]])/X)

X X


1 при X X+X


В качестве примера рассмотрим средство измерений для определения интегральной функции распределения вероятности уровня электрического сигнала. Схема средства измерений, реа­лизующего алгоритм

t

F* (X)=1/T   [xk(t) ,X]dt ,

t-T


показана на рис. 5, где ПУ — пороговое устройство, формиру­ющее сигнал X k (t}—X; ФУ—формирующее устройство; И—интегратор, на выходе которого получается сигнал F* (X) при установленных значениях Х и Т; УС — устройство сопряжения;

ЦИП — цифровой прибор; РП — регистрирующий прибор.

Средняя квадратическая погрешность из-за конечности объема выборки определяется для F {X) с помощью соотношения


2 1/2

 =[2(F - F )  k/T]

F


при усреднении по времени и с помощью соотношения

2 1/2

 =[2(F - F )/N]

F

при усреднении по совокупно­сти. Для (X) соответствующие соотношения имеют вид:

2 1/2

 =[2(w - w X)  k/T]

w


2 1/2

и  =[(w - w X)/N]

w


В приведенных соотношениях F и w — истинные значения измеряемых функ­ций при данном X.


4. ИЗМЕРЕНИЯ КОРРЕЛЯЦИОННОЙ ФУНКЦИИ

Для случайного процесса с нулевым математическим ожида­нием корреляционная функция равна:

Rx (s,) = lim Sd[xi (t) xi-s (t-)],

d

где  и s — соответственно сдвиг во времени и в пространстве реализации перемножаемых мгновенных значений.

В практических задачах большую роль играют стационарные случайные процессы, т. е. процессы с постоянными вероятностны­ми характеристиками, не зависящими от текущего времени. Сре­ди случайных процессов можно выделить эргодические процессы, для которых

t

Rx () = lim 1/T x (t) x (t-)dt,

T 0


Большое значение корреляционного анализа в различных областях науки и техники привело к созданию множества измери­тельных приборов для измерений корреляционных функций — коррелометров.

Типовая структура коррелометра, в котором используется усреднение по времени, представлена на рис. 6. При этом реализуется следующий алгоритм:

t

R*x () = 1/T xk (t) xk (t-)dt,

t-T


Как видно, после нормирующего преобразователя НП сигнал поступает в устройство временной задержки УЗ и на перемножа­ющее устройство ПУ, осуществляющее перемножение мгновен­ных значений, сдвинутых по времени на интервал т. Далее с по­мощью интегратора И выполняется усреднение, после которого результирующий сигнал через УС подается на цифровой прибор ЦИП или регистрирующий прибор РП.

Средние квадратические погрешности, обусловленные ко­нечностью объема выборочных данных о мгновенных значениях реализации процесса Х (t), оцениваются с помощью соотноше­ний:


1/2

 ={2D[xk (t) xk (t-)]  k/T}

R


при усреднении по времени Т и

1/2

 ={D[xk (t) xk (t-)]/N}

R


при усреднении по совокупности.


5. АНАЛИЗ СПЕКТРА МОЩНОСТИ

Спектр мощности характеризует ее частотное распределение, и он может быть определен в соответствии со следующими форму­лами:

2

Sx(w) = lim 1/T  xiT (w) 

T

Где

t -jwt’

XiT (w) =  xi (t’) e dt’

t-T

На рис. 7 изображена схема анализатора спектра мощно­сти случайного процесса Х (t).

С выхода нормирующего преобразователя НП i-я реализация случайного процесса xi (t) поступает на блок Ф, выполняющий преобразование Фурье, после чего узлом Кв производится возве­дение в квадрат и нормирование с учетом интервала усреднения Т. С помощью устройства сопряжения УС сформированный сиг­нал поступает на ЦИП и регистратор РП.

В настоящее время отечественной промышленностью серийно выпускаются анализаторы случайных процессов. К ним относят­ся многофункциональный статистический преобразователь Ф790, корреллометр Ф7016, комплекс измерителей характеристик случайных сигналов Х6-4/а, многофункциональные измерители ве­роятностных характеристик Ф36 и Ф37, анализаторы спектра Ф4326, Ф4327, Ф7058 и др. С помощью этих приборов и устройств можно измерять математические ожидания и дисперсии, а также значения функций распределения вероятности, корреляционных и спектральных функций с последующим восстановлением вида самих функций. Перечисленные анализаторы рассчитаны в ос­новном на унифицированный входной сигнал и позволяют изме­рить от 256 до 4096 ординат анализируемой функции. Погреш­ность измерения не превышает ±5 %.

Кроме того, для определения вероятностных характеристик случайных сигналов могут использоваться электроизмеритель­ные приборы, предназначенные для измерения среднего и дей­ствующего значений сигнала. Для определения среднего значе­ния применяют магнитоэлектрические приборы и цифровые ин­тегрирующие приборы. Для определения среднего квадратического отклонения используют приборы, показания которых определяются действующим значением сигнала (термоэлектри­ческие, электростатические и др.).

Корреляционные устройства получили применение в различ­ных областях науки и техники для измерения различных величин. В качестве примера можно указать корреляционное устройство для измерения скорости прокатки. Эти устройства измеряют кор­реляционную функцию, зависящую от т, которая, в свою очередь, зависит от скорости прокатки.









Список литературы :


1.Метрология и электроизмерительные приборы. Душин М .Е.\М.: Энергоатомиздат,1986.


2.Метрология, стандартизация и измерения в технике связи. Под ред. Б.П. Хромого

М.: Радио и связь, 1986.


3.Основы метрологии и стандартизации. Голубева В. П. \М .: Вектор, 19


Информация о работе «Измерение случайных процессов»
Раздел: Цифровые устройства
Количество знаков с пробелами: 19534
Количество таблиц: 0
Количество изображений: 7

Похожие работы

Скачать
13630
0
1

... математического ожидания. Таким образом, (72.6) принимает вид . (72.7) 72.2. Функции вида  , (72.8) где целые числа , называются начальными моментами порядка  случайного процесса . Аналогично центральные моменты определяются соотношениями:  . (72.9) Для функций (72.8), (72.9) используется общее название - моментные функции. Наиболее простые ...

Скачать
8776
0
4

... функция и функция плотности и вероятности имеют следующий вид: Описание лабораторной установки Для выполнения работы необходимо использовать универсальный стенд для изучения законов распределения случайных процессов и электронный осциллограф. Передняя панель стенда Стенд включает в себя: - семь источников независимых случайных сигналов (одного шумового с нормальным распределением, ...

Скачать
10791
0
17

... как . Найдем явный вид коэффициентов  в представлении (2.4), Видим, что Таким образом, справедливо следующее утверждение. Теорема 2.1. Оценка  взаимной спектральной плотности  стационарного в широком смысле случайного процесса , задаваемая равенством (2.5), удовлетворяет соотношению   , ,  при условии, что справедливо соотношение (2.4) для При нахождении моментов оценок ...

Скачать
17487
2
14

... 5), в котором предусмотрена возможность усреднения (Averaging) и оконной обработки (Window) для уменьшения краевых эффектов. а) б) Рис. 5 2. Генерирование коррелированных случайных последовательностей Чаще всего для генерирования коррелированных случайных последовательностей используется метод формирующего фильтра. Если на вход линейного формирующего фильтра подать белый шум x(t), ...

0 комментариев


Наверх