3. АНТРОПОГЕННОЕ ВОЗДЕЙСТВИЕ НА ЛИТОСФЕРУ
3.1. Антропогенное влияние на круговорот веществ
Рост промышленного производства требует все больших объемов потребления минеральных ресурсов. В настоящее время недра дают 75 % сырья для химической промышленности, около 85 % электроэнергии получают из энергетических видов полезных ископаемых. Начиная с 60-х гг. XX в. геохимическая деятельность человека не уступает по мощности природным процессам. Естественный круговорот вещества все больше заменяется искусственным. Человечество ежегодно извлекает из недр и освобождает при сгорании горючих ископаемых (особенно угля) многие химические элементы в равном или в большем количестве, чем их потребляется растительностью суши для создания годового прироста.
Ежегодно в мире добывается больше, чем включается в биологический круговорот: кадмия в 100 раз, сурьмы в 150, ртути в 110, свинца в 35, мышьяка и железа в 15, урана в 6, олова в 5, меди в 4, молибдена в 3 раза. Добыча таких химических элементов, как серебро, хром, никель, цинк, примерно равна ежегодному потреблению растительностью [18 ].
Общее мировое производство основных металлов характеризуется следующими показателями (т. в год): железо — п • 10 , марганец, алюминий — п • 107, медь, цинк, свинец — п • 106, никель, олово — п • 104, ртуть, серебро — п • 103. Выплавка металлов увеличивается примерно на 40 % каждые 10 лет, причем металлические руды извлекаются в количествах, не пропорциональных содержанию металлов в земной коре.
Множество химических элементов и их соединений освобождается при сжигании угля и рассеивается в окружающей среде, причем в масштабах, больших, чем при добыче. Ежегодно при сжигании угля выделяется больше, чем включается в биологический круговорот: ртути в 8 700 раз, мышьяка в 125, урана в 60, кадмия в 40, лития и бериллия в 10, олова в 3 - 4 раза [18]. Основная масса рассеянных элементов попадает в пределы наземных экосистем, поскольку добыча металлов и сжигание угля происходят на суше. Хотя часть этих элементов с речным стоком и в результате циркуляции воздушных масс выносится в моря и океаны, тем не менее ежегодно поверхность суши обогащается ими на миллионы тонн.
Соотношение между техногенной и природной миграцией отдельных металлов показано в табл. 3.1.
Таблица 3. 1
Сопоставление масс металлов, вовлеченных в техногениую и природную миграцию, тыс. т в год [31], с добавлениями) |
Элемент | Годовая добыча | Выделение при сжигании каменного угля | Захват годовым приростом растительности суши | Вынос растворенных форм речным стоком |
Марганец | 24000 (1989) | 310,0 | 41400 | 370,0 |
Медь | 8700 (1991) | 23,0 | 1700 | 260,0 |
Цинк | 5200 (1991) | 100,0 | 8600 | 740.0 |
Свинец | 4400 (1991) | 20,0 | 430 | 37,0 |
Хром | 2000 (1991) | 37,0 | 310 | 37,0 |
Никель | 700 (1991) | 10,0 | 350 | 74,0 |
Олово | 180 (1991) | 3,0 | 69 | 19,0 |
Молибден | 98 (1991) | 4,0 | 100 | 37,0 |
Кобальт | 23 (1990) | 4,0 | 173 | 11,0 |
Кадмий | 26 (1991) | 2,5 | 1 | 7,4 |
Титан | 37 (1990) | 3200,0 | 5600 | 110,0 |
Серебро | 10 (1990) | 3,0 | 7 | 11,0 |
Ртуть | 5,5 (1990) | 0,5 | 2 | 2,6 |
Важная особенность металлов — способность к активному рассеиванию. За последнее десятилетие только в результате истирания и коррозии было рассеяно (тыс. т): меди — 600, цинка — 500, свинца — 300, молибдена — 30 [18]. Множество металлов используется в промышленности, но при этом часть их уходит с промышленными стоками.
Человеческая деятельность способствует активному латеральному перераспределению вещества при транспортировке из одного региона в другой, концентрации его в виде отдельных конструкций и орудий производства и т. д.
Огромные масштабы воздействия промышленного производства на круговорот вещества все чаще вызывают озабоченность человечества. Географическая оболочка может не выдержать такого натиска, и естественные связи нарушатся, что приведет к катастрофическим последствиям для самого человека. Поэтому в последние годы пристальное внимание уделяется прогнозам в развитии промышленного производства и соответственно масштабам воздействия на круговороты химических элементов. Считается, что мировое потребление и добыча важнейших видов минерального сырья на рубеже XX. — XXI вв. в сравнении с уровнем 70-х и начала 80-х гг. увеличатся примерно в 1,5—2 раза.
Если даже предположить, что уровень добычи минеральных ресурсов, достигнутый в 80-х гг., останется таким же до 2000 г., то за последние 20 лет XX в. из недр планеты потребовалось бы извлечь 74 млрд т угля, 60 млрд т нефти, 30 млрд т газа, 18 млрд т железной руды (табл. 3.2).
Таблица 3.2
Возможные объемы добычи минерального сырья к 2000 г. [31]
Вид минерального сырья | Современный годовой объем добычи (по данным за 1991 — 1992 гг.) | 1981 — 2000 гг. | |
Возможные объемы добычи | |||
Вариант I | Вариант II | ||
(при сохранении до 2000 года современного уровня добычи) | (при небольшом ежегодном росте добычи) | ||
Уголь, млрд | 2.200 | 74.0 | 76.0-79.0 |
Нефть, млрд т | 3.112 | 60.0 | 61.0-62.0 |
Природный газ млрд. т | 1.762 | 30.0 | 33.0-35.0 |
Железная руда, млрд. т | 0.900 | 18.0 | 19.0-22.0 |
Бокситы млрд. т | 0.113 | 1.6 | 1.8-2.0 |
Медь, млн. т | 8.700 | 120.6 | 130.0-140.0 |
Никель, млн. т | 0.700 | 10.0 | 12.0-14.0 |
Молибден,млн. т | 0.100 | 2.0 | 2.1-2.2 |
... общая фитомасса российских лесов огромна - 56 млрд. тонн (в том числе до 3 млрд. тонн древесной зелени), страна испытывает значительные трудности в обеспечении отраслей народного хозяйства древесиной и продукцией ее переработки. При традиционных способах заготовки и переработки древесного сырья, крайне низок уровень его использования - 25…30% общего запаса биомассы дерева. Биомасса дерева состоит ...
... (на территориях по месту жительства, учебы), т.е. своей местности в рамках так называемой «малой родины». Поэтому в данном исследовании, во главу угла экологического обучения и воспитания в системе школьного географического образования положен краеведческий принцип, то есть всестороннее комплексное изучение «малой родины» 47, 49. В целом региональная направленность образования ...
... школьников практически отсутствует материал о значении научного предсказания возможных изменений в природе. Глава 2. Методические условия использования основ географического прогнозирования в процессе экологической подготовки школьников при обучении курсу «География России». 2.1. Модель методики использования географического прогнозирования в процессе экологической подготовки школьников при ...
... бассейн р. Большой Анюй и описала тундру к востоку от устья Колымы и к северу от р. Малый Анюй (см. рис. 3). Большую роль в дальнейшем изучении территории России и ряда зарубежных регионов сыграло создание в 1845 г. в Петербурге Русского географического общества (РГО). Подобные общества стали возникать в ряде стран мира начиная с 20-х годов XIX столетия (Парижское, Берлинское, Королевское в ...
0 комментариев