4. Методы определения первоначального опорного плана

4.1. Метод минимального элемента

Суть метода заключается в том, что из всей таблицы стоимостей выбирают наименьшую и в клетку, которая ей соответствует, помещают меньшее из чисел и . Затем из рассмотрения исключают либо строку, соответствующую поставщику, запасы которого полностью израсходованы, либо столбец, соответствующий потребителю, потребности которого полностью удовлетворены, либо и строку и столбец, если израсходованы запасы поставщика и удовлетворены потребности потребителя. Из оставшейся части таблицы стоимостей снова выбирают наименьшую стоимость, и процесс распределения запасов продолжают, пока все запасы не будут распределены, а потребности удовлетворены.

Пример

Составить первоначальный опорный план методом минимального элемента для транспортной задачи вида:

2 3 4 15
11 6 10 1
8 9 3 3
4 1 2 21
10 20 10

Решение:

Задача сбалансирована.

Строим первоначальный опорный план методом минимального элемента.

Выясним минимальную стоимость перевозок. Первая перевозка будет осуществляться с пункта производства в пункт потребления и она составит максимально возможное число единиц продукта :. В этом случае, потребности пункта потребления будут удовлетворены полностью. Значит, стоимости столбца 2 можно больше не рассматривать, так как перевозки .Выясним минимальную стоимость перевозок (без учета столбца № 2).

 

Вторая и третья перевозки будут осуществляться с пункта производства и в пункт потребления и соответственно и составят максимально возможное число единиц продукта : , ; Четвертая перевозка осуществляется с пункта в пункт потребления , т.к. (без учета первого, второго столбца и четвертой строки). . Пятая перевозка осуществляется с пункта в пункт потребления , т.к. (без учета первого, второго столбца, третьей и четвертой строки). .

 

6.       Шестая перевозка осуществляется с пункта в пункт потребления т.к. (без учета первого, второго столбца, первой, третьей и четвертой строки).

Опорный план имеет вид;

10 5 0
0 1 0
0 3 0
0 11 10

Информация о работе «Математическая постановка транспортной задачи линейного программирования»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 15346
Количество таблиц: 5
Количество изображений: 0

Похожие работы

Скачать
62893
11
17

... . При этом значения cij соответствуют коэффициентам целевой функции исходной замкнутой транспортной задачи (1) и в последующем не изменяются. Элементы xij соответствуют значениям переменных промежуточных решений транспортной задачи линейного программирования и изменяются на каждой итерации алгоритма. Если в некоторой ячейке xij=0, то такая ячейка называется свободной, если же xij>0, то такая ...

Скачать
48425
13
5

... , является линейной функцией переменных : (2.4)   Требуется в области допустимых решений системы уравнений (2.1) и (2.1.1) найти решение, минимизирующее линейную функцию (2.4). Таким образом, мы видим, что транспортная задача является задачей линейного программирования. Для ее решения применяют также симплекс-метод, но в силу специфики задачи здесь можно обойтись без ...

Скачать
34424
6
3

... задачи линейного программирования, они очень сложны и решаются специальными, обычно многостадийными приемами с использованием эвристических элементов. 3. Решение задач   3.1. Решение задачи линейного программирования   3.1.1.Постановка задачи Сформулируем задачу: Определить значения переменных, обеспечивающие минимизацию целевой функции. Составим целевую функцию и зададим ограничения. ...

Скачать
29598
7
4

... . Система векторов условий транспортной задачи линейно независима тогда и только тогда, когда из соответствующих им клеток таблицы нельзя образовать ни одного цикла. Следовательно, допустимое решение транспортной задачи , i=1,2,…,m; j=1,2,…,n является опорным только в том случае, когда из занятых им клеток таблицы нельзя образовать ни одного цикла. Метод вычеркивания. Для проверки возможности ...

0 комментариев


Наверх