Литература - Патофизиология (заболевания печени)

123382
знака
0
таблиц
0
изображений

ЛИТЕРАТУРА


1. Гальперин Э.И., Семяндяева М.И., Неклюдова Е.А. Недостаточность печени.-М.: Медицина, 1978.-328 с. 2. Алажиль Д., Одьевр М. Заболевания печени и желчных путей у детей: Пер. с англ.-М.: Медицина, 1982.-486 с. 3. Блюгер А.Ф., Новицкий И.Н. Практическая гепатология.-М.: Медицина, 1984.- 405 с. 4. Мусил Я. Основы биохимии патологических процессов: Пер. с чешск.-М.: Медицина, 1985.-430 с. 5. Логинов А.С., Блок Ю.Е. Хронические гепатиты и циррозы печени.-М.: Медицина, 1987.-270 с. 6. Хазанов А.И. Функциональная диагностика болезнй печени.-М.: Медицина, 1988.-304 с. 7. Классификация и критерии диагностики внутренних болезней. Под ред. А.Д.Куимова, Новосибирск, 1995 - 107 - 114 с. 8. Klinische Pathophysiologie. Stuttgert - New York, 1987 - 864 - 900 с. .


- 4 -


Для своей жизнедеятельность организм постоянно нуждается в введении различных веществ из окружающей среды. Основная масса этих веществ в составе пищи поступает в желудочно-кишечный тракт, где и происходит их расщипление и последующее всасывание. Эти вещества могут иметь кислую и щелочную природу, обладать биологической активностью, иметь антигенные свойства, наконец, быть токсическими. В процессе расщепление многих веществ образуются токсические промежуточные продукты. Тем самым, непосредственное поступление этих веществ в общий кровоток привело бы к серьезным последствиям.

По сути между желудочно-кишечным трактом и внутренней средой - системой крови, лимфы и тканевой жидкости, находится печень - гепато-билиарной система. Именно здесь и происходит основная часть биохимических процессов, направленных на поддержание постоянства внутренней среды.

Печень выполняет многообразные функции, поэтому нарушение ее деятельности влечет за собой ряд патологических изменений в организме. При патологии печени, с одной стороны, нарушается пищеварение, развивается интоксикация, изменяется сосудистый тонус, снижается свертываемость крови, нарушается кроветворение, иммунологическая реактивность. С другой стороны, различные заболевания, связанные с инфекционно-токсическими факторами,нарушениями диеты, приводят к развитию пат ологии печени. Поэтому знания причин, вызывающих патологию печени, патологических процессов, протекающих в ней, необходимо, чтобы правильно оценить и предвидеть все многообразие изменений, наступающих в организме при заболеваниях печени.


СТРОЕНИЕ И ФУНКЦИИ ПЕЧЕНИ


Согласно современным представлениям, печень взрослых высшых позвоночных представляет собой сложноразветвленный орган ацинарного строения. Структурно-функциональной единицей органа являются простые почечные ацинусы-мельчайшие разнокалиберные участи паренхемы, имеющих форму тутовой ягоды, ориентированных вокруг мельчайших терминальных разветвлений воротной вены и терминального участка печеночной артерии. Вместе с ними проходят и начальные участки мельчайших желчных протоков,так называемые внутрипеченочные желчные ходы или дуктулы.

В соотвецтвии с реально существующими условиями кровообращения в паринхеме следует различать три зоны печеночных клеток в простом ацинусе, которые отличаются условиями своего существования, функциями и строением.

Первая зона представлена клетками, находящимися в оптимальных условиях кровообращения. Но в то же время, клетки этой зоны первыми и в наибольшей степени вступают в контакт с различными вредоносными факторами. Т.к клетки первой зоны ацинуса первыми встречаются с кровью воротной вены, то они хорактеризуются особо высокой активностью распираторных окислительныхферментов цикла Кребса,наиболее высокими показателями энергитического потенциала, углеводного обмена (проежде всего глюконеогенеза), максимальным накоплением лабильногогликогена в цитоплазме, а в ряде случаев и в ядре, а также наиболее высоким урнем белкового обмена.

Условия существования печеночных клеток по мере удаления от осевого синусоида ацинуса постепенно ухудшаются и в наименее выгодных услвиях находятся клетки третьей зоны-зоны циркуляторной периферии ацинуса,оказываясь тем самым наимение резистентными к любым повреждениям. Через клетки третьей зоны протекает кровь с относительно бедным содержанием кислорода и питательных веществ, поэтому у этих клеток наиболее выражены процессы синтеза основных "экспортируемых" клеткой белков- альбумина, фибриногена, и др. У этих клеток весьма высок уровень гликолитических процессов. Гепатоциты этой зоны в первую очередь накапливают различные печеночные пигменты, в большинстве своем содержащие липиды. В этих клетках ранее всего и чаще всего формируются липидные накопления. Процессы активного респираторного окисления в клетках третьей зоны выражены значительно слабее.

Сложность функции печени и преобладание в них синтетических и клиренсных функций обусловливает ряд особенностей строения эпителиальной паринхемы. Печеночные клетки располагаются переплетенными однорядными пластинами, благодаря чему микроциркулярное русло синусоиды непосредственно сопрекасается с каждой паринхиматозной клеткой. паринхемотозной клеткой. Максимальному облегчению обмена между кровью и гепатоцитом способствует своеобразное страение стенок печеночных синусоидов, которое не имеет свойственной капиллярам других органов базальной мембраны.Стенка построена из в один ряд лежащих на каркасе ретикулярных волокон купферовских клеток, между краями которых имеются щелевые пространства.Между купферовскими клтками и гепатоцитами имеется свободное пространство - пространство Десси, которое заполнено гликокаликсом. На поверхности гепатоцита,обращенной в п ространство Десси, имеются микроворсинки, которые увеличивают обменные возможности на границе кровь-гепатоцит.

Выведение продуктов внешней секреции печеночных клеток-желчи осуществляется со стороны другого - билиардного полюса гепатоцита в желчные капилляры. Они представляют собой щелевидные ходы между двумя или тремя клетками. Т.о.желчные капилляры не имеют собственных клеток. Они герметически замкнуты специальным замыкающим аппаратом, связывающим по их краю наружные клеточные мембраны соседних гепатоцитов.

Экзокринная и эндокринная (или метаболическая ) функции печени осуществляется в основном одними и тем же клетками - гепатоцитами. Они отвецтвенны за образование и выделение желчи, а также замногочисленные преобразования веществ,поступающих с кровью в печень. К настоящему времени известно более 500 метаболических функций печени.

Схематически можно выделить следующие основные функции печени:

1.Белковый обмен.

2.Углеводный обмен.

3.Липидный обмен.

4.Обмен витаминов.

5.Водный и минеральный обмен.

6.Обмен желчных кислот и желчеобразование.

7.Пигментный обмен.

8.Обмен гормонов.

9.Детоксицирующая функция.


БЕЛКОВЫЙ ОБМЕH


Участие печени в белковом обмене включает в себя ряд функций:

1. Синтез белка.

2. Распад белка.

3. Переаминирование и дезаминирование аминокислот.

4. Образование мочевины, глютамина и креатина.

5. Специфический обмен некоторых аминокислот.

Синтез белков осуществляется, прежде всего, из свободных аминокислот, которые поступают в обменный фонд печени из трех источников:

1) экзогенные свободные аминокислоты, поступающие с

кровю воротной вены из кишечника;

2) эндогенные свободные аминокислоты и другие продукты

эндогенного белкового распада;

3) аминокислоты, образующиеся в процессе обмена из уг-

леводов и жирных кислот.

У взрослых людей с весом тела около 70 кг 12 кг относятся к белкам, из которых 200-300 г. ежедневно подлежат расходу и неосинтезу. Из них белки мускулатуры составляют 53% и белки печени 20%. После мускулатуры печень - орган с наиболее интенсивным синтезом белка. Печень синтезирует из аминокислот ежедневно 50 г. белка, из которых 12 г. относятся к альбумину.

В печени синтезируются все альбумины, 90% альфа1-глобулинов (альфа1-гликопротеид, альфа1-липопротеид, альфа1-антитрипсин ), 75% альфа2-макроглобулинов ( церулоплазмин, альфа2-антитромбин, альфа2-макроглобулин) и 50% вета-глобулинов (гемопексин, трансферин, вета2-микроглобулин, значительное ко личество липопротеидов ). В условиях патологии печень может синтезировать и гамма-глобулины.

Кроме того, печень синтезирует большое количество прокоагулянтов (фибриноген,протромбин, проконвертин, проакцелерин и антигемофильные факторы).

Поддержание постоянного аминокислотного состава крови также является одной из основных функций печени.Вслучае недостка какой либо аминокислоты с помощью переаминирования и дезаминирования осущесществляется пополнение этого недостатка. Спектр аминокислот, подвозимых в крови портальной вены в печень, претерпевает в печени изменения, поскольку аминокислоты частично могут распадаться до мочевины, частично участвуют в биосинтезе белков или глюкозы, частично проходит через печень неизмененными. Поскольку в печени преимущественно распадаются ароматические аминокислоты (фенилаланин, тирозин и метионин), в мускулатуре распадаются главным образом аминокислоты с разветвленной цепью (валин, лейцин или изолейцин), кровь печеночной вены содержит относительно более высокий уровень аминокислот с разветвленными цепями, по сравнению с кровью воротной вены.Аминокислоты с разветвленными цепями в мускулатуре и в головном мозге служат для получения энергии.Напротив,ароматические аминокислоты, которые конкурируют с аминокислотами с разветвленными цепями за транспортные системы в гематоэнцефалическом барьере, превращаются в нейротрансмиттеры.Обезвреживание аммиака в головном мозге достигается посредством образования глютамина из глютамата.Глютамин с кровью транспортируется к почкам и к печени, и служит в почках в качестве субстрата для выведения аммиака в мозге и, следовательно,для регуляции кислотно-щелочного равновесия при помощи почек.В печени происходит обезвоживание аммиака из глютамина через цикл мочевины.Образование мочевины представляет собой определенную ступень обезвреживания мочевины в печени, поскольку мочевина выделяется с мочой, и образование мочевины является необратимым.


Обезвреживание аммиака и функция печени в

качестве регулятора величины рН.

Биосинтез мочевины и глютамина представляет собой важнейшую возможность обезвреживания аммиака печенью.Синтез мочевины происходит в печени, в цикле мочевины, открытом Krebs и Henseleit (46).Глютамин образуется при переносе аммиака из глютамата посредством глютаминсинтетазы.Отщепление ионов аммония от глютамина производится посредством глютаминазы.Синтез и расщепление глютамина происходит совместно в глютаминовом цикле.В соответствии с концепцией метаболического зонирования печеночного ацинуса цикл мочевины и реакция глютаминазы глютаминового цикла локализуется в перипортальной зоне, в то время как реакция глютаминсинтетазы глютаминового цикла находится в перивенозной зоне (32)(рис.34.5).Поскольку фермент, определяющий скорость цикла мочевины, локализующегося перипортально, карбамилфосфатсинтетаза имеет незначительное сродство с ионами аммония (Кm=1-2мМ/л), по сравнению с перивенозно локализуемой глютаминсинтетазой глютаминового цикла (Кm=0,3мМ/л), обезвреживает только при высоких концентрациях аммония в цикле мочевины.Ионы аммиака, которые обезвреживаются при токе перипортальной крови от перипортального в перивенозном направлении не через цикл мочевины, происходит вследствие высокого сродства глютаминсинтетазы к аммиаку еще в перивенозной зоне печеночного ацинуса.Таким образом, аммиак в физиологических концентрацией портальной крови (0,3мМ/л) обезвреживается посредством образования мочевины,а также посредством синтеза глютамина.

Поскольку при синтезе мочевины в печени, наряду с ионами аммония, также используются ионы бикарбоната (см. суммарную формулу на рис.34.5) и синтезируемый в печени, транспортируемый к почкам глютамин выводится в виде ионов аммония посредством печеночной глютаминазы в мочу, и печень в состоянии стабилизировать значение рН посредством изменения скорости синтеза глютамина - таким образом, печень обладает функцией стабилизатора величины рН.

При метаболическом ацидозе в печени понижается скорость синтеза мочевины, в ней снижается уровень бикарбоната.Скорость синтеза глютамина в печени повышается, транспортируемый к почкам глютамин отдает больше ионов аммония и, следовательно, протонов в мочу.При метаболическом алкалозе необратимо повышается синтез мочевины, расходуется больше бикарбоната.Напротив, вследствие уменьшенного синтеза глютамина в печени, почки уменьшают подачу глютамина для выведения ионов аммония в мочу (рис.34.5).


Нарушения метаболизма аминокислот

и синтеза мочевины при болезнях печени.

При острых и хронических заболеваниях печени могут возникать изменения обмена аминокислот и белков вследствие уменьшения функциональной массы гепатоцитов и вследствие наличия портосистемного шунта потока крови.

Нарушения обмена аминокислот при хронических заболеваниях печени выявляются тем, что спектр аминокислот в плазме по сравнению со здоровыми при хронических заболеваниях печени характеризуется понижением содержания аминокислот с разветвленными цепями на 30-50% (лейцин, изолейцин, валин) и повышением содержания ароматических аминокислот (тирозин, фениламин и метионин).Понижение содержания аминокислот с разветвленными ?аминокислотами(цепями) приводит при хронических заболеваниях печени к наблюдаемой гиперинсулинемии.Гиперинсулинемия обусловлена повышенным распадом аминокислот с разветвленными цепями на переферии, в мускулатуре и жировой ткани (84) и, следовательно, к понижению содержания этих аминокислот в плазме.Повышение содержания ароматических аминокислот в плазме при хронических заболеваниях печени объяснсется уменьшением распада этих аминокислот в печени вследствие нарушения функций печени, поскольку содержание ключевых печеночных ферментов распада ароматических аминокислот, для триптофана - триптофанпирролаза, в печени понижено (84).

Поскольку при хронических болезнях печени и при циррозе также уменьшена скорость синтеза мочевины вследствие уменьшения содержания ферментов цикла мочевины, таким образом, объясняется повышение содержания аминокислот плазмы, особенно ароматических аминокислот, а также в уменьшенном распаде аминокислот в цикле мочевины (32).Поскольку обезвоживание ионов аммония в цикле мочевины локализуется в перипортальной зоне печеночного ацинуса, и при циррозе особенно повреждается морфологически перипортальный регион, что объясняется уменьшением скорости синтеза мочевины при хронических заболеваниях печени и наступившей гипераммониемией, а также склонностью к развитию метаболического алкалоза.Метаболический алкалоз имеет место при хронических заболеваниях печени вследствие снижения потребления бикарбоната вследствие уменьшения скорости синтеза мочевины, причем компенсаторно для обезвреживания аммиака в перивенозной зоне печеночного ацинуса может быть повышен синтез глютамина.(32)(рис.34.5).

При наличии застойной печени перивенозная зона печеночного ацинуса необратимо повреждена в отношении обезвреживания ионов аммония посредством синтеза глютамина.Это может приводить к метаболическому ацидозу вследствие уменьшенного выделения аммония почками при застойной печени (32).Таким образом, изменения метаболизма аминокислот и обезвреживания аммония при хронических болезнях печени представляют собой важные факторы в патогенезе изменений кислотно-щелочного равновесия и в возникновении печеночной энцефалопатии.


Нарушения метаболизма белка

при заболеваниях печени.

Изменения белков плазмы при заболеваниях печени могут отражать изменения биосинтеза белка в печени, поскольку многие белки плазмы синтезируются исключительно в печени.

Альбумин: больные с циррозом печени часто имеют пониженный уровень сывороточных альбуминов.Этот уровень может быть отражением пониженного запаса альбуминов в плазме, а может при нормальном запасе плазменных альбуминов быть также выражением эффекта разбавления.Так, у больных с циррозом печени и гипоальбуминемией, а также с асцитом часто наблюдается нормальный запас альбумина в плазме и даже повышенный общий альбумин в теле, вследствие повышения экстраваскулярного запаса альбумина.Таким образом, при характеризации метаболизма альбуминов при болезнях печени следует проводить различие между больными с асцитом и без него.

У больных с циррозом печени без асцита гипоальбуминемия обозначает уменьшение синтеза альбуминов, интраваскулярного запаса альбуминов и общего альбумина всего тела.Ежедневный синтез альбумина может уменьшаться при циррозе с 10-12 г до 4 г.

У больных с циррозом печени с асцитом, несмотря на гипоальбуминемию, синтез альбумина, напротив, очень часто бывает нормальным.Секреция синтезируемого в гепатоцитах альбумина в плазму может нарушаться коллагеном цирроза, так что до 89% новосинтезированного альбумина непосредственно переходит в асцит и, таким образом, несмотря на нормальный синтез альбумина, может возникать гипоальбуминемия.По этой причине уровень сывороточного альбумина не находит выражения в производительности синтеза печенью, вследствие длительного времени полужизни распада альбумина, которое составляет около 3-х недель. Напротив, определение факторов свертывания в крови является отражением производительности синтеза в печени, поскольку время полужизни факторов свертывания очень невелико.

Факторы свертывания: печень играет важную роль в гемостазе, поскольку она ответственна за синтез большинства факторов свертывания и за распад фибринолитических факторов.Печень синтезирует фибриноген (фактор 1) и факторы свертывания 5, 7, 9 и 10, причем, за исключением фибриногена, все другие факторы для синтеза нуждаются в витамине К.Тяжелые острые болезни печени могут, посредством выпадения функции печени, вследствие уменьшения синтеза, привести к быстрому падению содержания факторов свертывания 2, 5, 7 и 10 с удлинением протромбинового времени, поскольку время полужизни факторов свертывания лежит между 2 и 4 днями.Уровень фибриногена в крови, как правило, не уменьшен.Поскльку для синтеза факторов свертывания 2, 7, 9 и 10 также необходим витамин К, который в качестве жирорастворимого витамина в кишечнике всасывается при участии желчных кислот и образуется микробами кишечника, то мальабсорбция, застойная желтуха и стерилизация содержимого кишечника антибиотиками приводят к нарушениям свертывания вследствие дефицита витамина К. Введение витамина К устраняет при нормальной функции печени эти нарушения свертывания.

Наряду с факторами свертывания при тяжелых поражениях печеночной паренхимы вследствие нарушений синтеза активность холинэстеразы и концентрации гаптоглобина и церулоплазмина в плазме понижены.


Экстрацеллюлярный фибриногенез.

матрикс - коллаген.

Соединительная ткань экстрацеллюлярного матрикса печени содержит три основные группы макромолекул: 1. Коллаген; 2. Протеогликан и 3. Гликопротеины, которые все при циррозе печениобнаруживаются по повышенным концентрациям в печени (73).

Коллаген представляет собой гетерогенный класс протеинов, их аминокислотный состав на одну треть представлен глицином и на одну четверть пролином и гидрооксипролином. Коллаген очень устойчив по отношению к протеолитическому распаду, только специфические ферменты (коллагеназы) расщипляют коллаген.

В печени человека можновыделить пять различных типов коллагена, имеющих структурные различия между собой: коллаген типа I, III, IV, V, VI. В нормальной печени человека коллаген типа I и типа III составляют примерно треть всего коллагена печени, который составляет, в общем, 2-8 мг/1г сырого веса печени. Содержание коллагена повышается при циррозе до 30 мг/1мг сырового веса печени, так что в конечной стадии цирроза печени печень может содержать примерно 15 г коллагена. Коллаген типа IV, V и VI в нормальной печени человека количественно представляют собой менее значимые компоненты. Все типы коллагена находятся, в том или ином количественном выражении, в области портального факта, в пространстве Дисса и в фибротических фактах печени, причем гепатоциты, купферовские клетки, клетки Ито, эндотелиальные клетки синусоида, а также клетки портального тракта и воспалительные клетки способны к синтезу коллагена.Фибриногенез: под фибриногенезом понимают образование соединительной ткани, например, в печени.При всех формах цирроза печени до сих пор наблюдалось повышенное содержание коллагена.При биосинтезе коллагена внутриклеточно в качестве предстадий сначала образуется препроколлаген и после отщепления аминокислот получается преколлаген, гидроксилированием остатков лизина или пролина, например, посредством внутриклеточной пролингидроксилазой.Определение активности печеночной пролингидроксилазы в пунктатах печени применяется для характеристики коллагенсинтетазы, поскольку может быть обнаружена корреляция между синтезом коллагена и активностью этого фермента в легочной ткани.Проколлаген подвергается при секреции из клеток, а также внеклеточно,дальнейшим ферментативным превращениям посредством проколлагенпептидаз,до того, как он внеклеточно образует соответствующие структуры коллагеновых фибрилл.На поверхности новообразованных коллагеновых фибрилл, а также и в плазме могут быть образованы проколлагеновые фибриллы.По этой причине производится радиоиммунологическое определение проколлагеновых пептидов, в особенности, проколлагеновых пептидов типа 3, в плазме, для охарактеризации метаболизма коллагена при заболеваниях печени.

Не менее существеена для организма и многостронная роль печени в катаболизме белка. В печени осуществляются все этапы ращепления белковых веществ до образования аммиака, мочевины,глютамина и креатина. Если мочевина и креатин евляютсяпутями обезвреживания аммиака, то глютамин - транспортная форма а ммиака в крови.

Печеночная паренхема осуществляет и катаболизм нуклеоопротеидов с ращеплением их до аминокислот, пуриновых и пиримидиновых оснований. Причем последние превращаются в мочевую кислоту.

Гепатоциты содержат ряд ферментов, обеспечивающих специфический обменотдельных аминокислот. Так, около 90% фенилаланина превращается в печени в тирозин. Из триптофана образуется триптамин, серотанин, никотиновая кислота. Регуляция белкового обмена достаточно устойчевая функция печени.


УГЛЕВОДНЫЙ ОБМЕН


Участие печени в углеводном обмене включает в себя следующие функции :

1.Включение галактозы и фруктозы в метобализм.

2.Глюконеогенез.

3.Окисление глюкозы .

4.Синтез ираспад гликогена.

5.Образование глюкороновой кислоты.

Печень занимает ключевые позиции в углеводном обмене: ей пренадлежит главная роль в поддержании стабильной концентрации глюкозы в сывортке крови. Это достигается за счет:

1)синтеза и расходованея глюкозы;

2)активациии торможения глюконеогенеза.

В пострезорбтивной фазе, примерно черер 4 часа после приема пищи, потребность организма в глюкозе составляет примерно 7,5 г в час, причем мозг потребляет 6 г в час и эритроциты 1,5 г в час.Эта потребность в глюкозе покрывается печенью, где 4,5 г в час поставляется за счет распада гликогена и 3 г в час - глюконеогенезом из лактата, аминокислот и глицерина (43).

При обычном питании с потреблением углеводов, равном примерно 100 г эквивалента глюкозы во время еды в ходе фазы резорбции только в первые оба часа после приема пищи всасывается примерно 40-60 г глюкозы в час.Мозг и эритроциты потребляют только примерно 7,5 г в час.Избыточная глюкоза прежде всего воспринимается печенью, превращается в гликоген, жир или в СО2.Инсулин, который при всасывании глюкозы одновременно выделяется в кровь воротной вены, стимулирует это поглощение глюкозы и превращение.

Фруктоза превращается в печени при помощи фермента фруктокиназы во фруктозо-1-фосфат и, наконец,альдолазой печени переводится в триозы глицеринальдегид и дигидроксиацетон-фосфат, которые могут метаболизироваться в лактат.Таким способом в нормальной печени в лактат превращается около 70% поглощенной фруктозы.При инфузии фруктозы происходит повышение уровня лактата в сыворотке в 2-5 раз с развитием лактатацидоза, в то время как при инфузии глюкозы в крови наблюдается лишь двукратный подъем концентрации лактата.Причиной развития лактатацидоза при инфузии фруктозы, в отличие от инфузии глюкозы можно усматривать в том, что вследствие очень высокой активности фруктокиназы в печени, с полувременем, равным 18 минутам, фруктоза очень быстро переводится в печени в лактат.

Галактоза в тонком кишечнике освобождается из лактозы, при пассаже крови воротной вены через печень почти полностью удаляется посредством фосфорелирования специфической галактокиназой из крови.Элиминация галактозы через рот или после внутривенной инъекции галактозы применяется для характеризации функции печени (86).


Нарушения метаболизма углеводов

при заболеваниях печени.

Поскольку печень работает как глюкостат для целей глюкозогомеостаза организма человека, то заболевания печени ведут к гипогликемии, но чаще к гипергликемии ("гепатогенный диабет").Генетически обусловленные дефекты в метаболизме углеводов в печени ведут к тяжелым врожденным заболеваниям с функциональными ограничениями печени.


Гипергликемия и "гепатогенный диабет".

При хронических заболеваниях печени, особенно при циррозах, часто наблюдается нарушение гомеостаза глюкозы.Нарушение гомеостаза глюкозы у больных с циррозом печени выявляется часто при проведении тестов на толерантность к инсулину (18).Примерно половина всех больных с циррозом печени обнаруживают патологическую толерантность печени и в 10% мягкий корригируемый диетой и сульфанилмочевины сахарный диабет(18).

Наблюдаемый при циррозе печени гиперинсулинизм является следствием уменьшенного распада инсулина в печени.С другой стороны, несмотря на повышение периферического уровня инсулина, в крови у больных с циррозом печени наблюдается уменьшение толерантности к глюкозе, у больных с циррозом печени наблюдается резистентность к инсулину.Резистентность к инсулину является следствием уменьшения сродства или числа рецепторов инсулина, поскольку у больных с циррозом печени наблюдается уменьшение числа рецепторов инсулина в моноцитах, эритроцитах и жировых клетках (60,85).В некоторых случаях резистентность к инсулину дополнительно может быть обусловлена дефектом рецепторов, а также нарушением реакций, которые ведут к активированию рецепторов пострецепторными дефектами.Резистентность к инсулину, с другой стороны, снова приводит к уменьшению толерантности глюкозы.Таким образом, патогенез гепатогенного сахарного диабета попадает в порочный круг, в котором заболевание печени ведет к уменьшению степени превращения глюкозы и, следовательно, к гипергликемии.Гипергликемия ведет к гиперинсулинемии, поскольку распад инсулина в печени замедляется при повреждениях печени.Гиперинсулинемия характеризуется ?"Догоп"-регуляцией рецепторов инсулина, и понижением числа рецепторов инсулина, следствием чего является резистентность инсулина.Резистентность инсулина ведет к гипергликемии через понижение превращения глюкозы.


ЛИПИДНЫЙ ОБМЕН

Роль печени в метаболизме липидов и липопротеинов состоит в синтезе липидов (триглицериды, холестерин и фосфолипиды), липопротеинов (ЛГОНП и ЛПВП), апопротеинов, липопротеинов и ферментов метаболизма липопротеинов и жиров (лецитин-холестерин-ацилтрансферазы (ЛХАТ), а также в катаболизме хиломикрон, остатков ЛПОНП, ЛПНП и ЛПВП.

В липидном и липопротеиновом обмене жирные кислоты с короткими и средними цепями транспортируются из пищи через воротную вену прямо в печень, в то время как жирные кислоты с длинными цепями должны расщепляться в слизистой оболочке тонкого кишечника на триглицериды, они, как и холестерин пищи, транспортируются в виде хиломикрон.Хиломикроны, которые через грудной проток попадают в кровь, посредством липопротеилипазы превращаются в остатки хиломикрон, которые воспринимаются Е-рецепторами аполипопротеинов печени.Экзогенный холестерин здесь смешивается с эндогенным холестерином и выделяется печенью с желчью, метаболизируется в желчные кислоты или с синтезируемыми в печени триглицеридами выводится в кровь в виде ЛПОНП.

ЛПОНП в качестве важнейшего богатого триглицеридами липопротеина синтезируется печенью, в крови подвергается метаболическому каскаду при взаимодействии с липопротеинлипазой и, вероятно, также при участии печеночной триглицеридлипазы в ЛПНП (рис.34.6).ЛПНП представляют собой для переферических клеток главный источник холестерина.С другой стороны, частичы ЛПНП воспринимаются рецепторами ЛПНП гепатоцитов в клетки печени и лизосомальными ферментами разрушаются на компоненты.В гепатоцитах повышение содержания свободного холестерина вызывает торможение HMG-СоА-редуктазы, ключевого фермента синтеза холестерина, активацию ацил-КоА-холестерин-ацилтрансферазы и следовательно, накопление свободного холестерина в форме эфиров холестерина и, наконец, торможение образования рецепторов ЛПНП в клетках, следствием чего является поглощения холестерина.Зависимое от рецепторов поглощение ЛПНП представляет собой существенный элемент регуляции синтеза холестерина в теле и гомеостаза холестерина (10).

Наряду с ЛПОНП в печени также происходит первый этап синтеза ЛПВП, образования ЛПВП и передача их в кровь.При воздействии лецитин-холестерин-ацилтрансферазы (ЛХАТ), новообразованные ЛПВП превращаются в ЛПВП, причем освобождается эфир холестерина, который переносится на ЛППП и ЛПВП.ЛПВП транспортируют холестерин из переферических клеток в печень обратно и разрушаются в печени (рис.34.6).Таким образом, ЛПВП представляет собой резервуар для избыточного холестерина переферических клеток, который транспортируется к печени и там образует запас холестерина, который используется для желчной секреции холестерина, распада желчных кислот или для повторной утилизации.Вследствие этой центральной роли печени в метаболизме липопротеинов при заболеваниях печени имеют место качественные и количественные изменения липидов плазмы.

Нарушения метаболизма

липопротеинов при заболеваниях печени.

При заболеваниях печени с желтухой нередко наблюдается повышение неэстерифицированного холестерина в сыворотке, в то время как уровень холестерина оказывается очень часто ?.Пониженный уровень эфиров холестерина в плазме при заболеваниях печени может рассматриваться во взаимосвязи с пониженной активностью лецитин-холестерин-ацилтрансферазы (ЛХАТ) в пораженной печени, что находит отражение также в переферической крови и, таким образом, в уменьшенной этерификации холестерина жирными кислотами.При хронической застойной желтухе вследствие регургитации желчи, богатой холестерином и лецитином, в плазме наблюдается повышение свободного холестерина и лецитина в крови.

Гипертриглицеридемия, которая может наблюдаться при остром и хроническом гепатитах, а также при холестазе, и сильно связана с частицами ЛПВП, обогащенными триглицеридами, объясняется понижением активности печеночной липазы, которая в норме отщепляет триглицериды.С другой стороны, появление богатых триглицеридами ЛПВП при застойной желтухе может объясняться понижением содержания эфиров холестерина в частицах ЛПВП вследствие уменьшения активности ЛХАТ при уменьшении образования эфиров холестерина.

У больных с холестазом в плазме в 99% наблюдается особый липопротеин, так называемый липопротеин Х (ЛП-Х), в то время как при отсутствии холестаза ЛП-Х в 97% не может быть обнаружен в плазме (80).Для дифференциального диагноза желтухи, тем не менее, определение липопротеина Х бесполезно, поскольку он повышается при внутрипеченочном и внепеченочном холестазе.

Клинически липопротеинемия при хронической застойной желтухе приводит к образованию ксантом в коже, в которых обнаруживаются ошеломляющие количества прежде всего эстерифицированного холестерина, наряду со свободным холестерином.


ОБМЕН ВИТАМИНОВ Печень участвует в обмене почти всех витаминов.Она заключается в выполнении следующих функций:

1.Участие во всасывании и, прежде всего, жирорастворимых витаминов.

2.Синтез витаминов.

3.Образование биологически активных форм витаминов.

4.Депонировании и выделении избытка витаминов из организма.

ВОДНЫЙ И МИНЕРАЛЬНЫЙ ОБМЕН

Роль печени в поддержании минерального обмена заключается главным образом в ее участии обмена и депонирования меди, железаи и цинка.

Участие печени в водно-солевом обмене связано:

1) с поддержанием онкотического давления плазмы;

2) с регуляцией уровня натрия и калия плазмы крови путем влияния на уровень альдостерона в плазме крови.


ОБМЕН ЖЕЛЧНЫХ КИСЛОТ И ЖЕЛЧЕОБРАЗОВАНИЕ

Желчные кислоты подвергаются кишечно-печеночной циркуляции.Ежедневно в печени синтезируется 200-600 мг желчных кислот из холестерина.Этот синтез выравнивается дневной потерей желчных кислот в кале (200-600 мг) и в моче (0,5 мг), так что запас желчных кислот в организме человека остается постоянным и равным 3 г. В печени также происходит конъюгация желчных кислот с аминокислотами глицином и таурином, сульфатирование, глюкуронирование и глюкозирование.Выделяемые в желчь желчные кислоты при голодании преимущественно попадают в желчный пузырь.Во время пищеварения после сокращения желчного пузыря запас желчных кислот 2-3 раза проходит кишечно-печеночный цикл, причем основная часть желчных кислот резорбируется в терминальной части тонкого кишечника, так что ежедневно, в случае 3-4-кратного приема пищи 12-36 г желчных кислот поступает в тонкий кишечник.Только незначительная часть желчных кислот поступает в толстый кишечник и метаболизируется ферментами микробов.Часть этих желчных кислот резорбируется в толстом кишечнике.Резорбируемые в кишке желчные кислоты кровью воротной вены доставляются к печени и большей частью воспринимаются гепатоцитами.Небольшая часть желчных кислот экстрагируется гепатоцитами из крови воротной вены и поступает в переферическую циркуляцию, так что при физиологических условиях концентрация желчных кислот в переферической крови составляет 120-200 мкг/дл (3-5 мкмоль/л), что очень низко.Циркулирующие в переферической крови желчные кислоты лишь незначительно выделяются с мочой (0,5 мг/сут=1,3 мкМ/сут), поскольку печень эти желчные кислоты экстрагирует с высокой эффективностью и выделяет с желчью.Таким способом запас желчных кислот сохраняется посредством кишечной экстракции и секреции в желчь (рис.34.7)(14).


Синтез желчных кислот.

В печени происходит синтез первичных желчных кислот (холевая и хенодезоксихолевая кислоты) из неэстерифицированного холестерина.Первый шаг синтеза желчных кислот состоит в 7а-гидроксилировании холестерина при воздействии расположенной в микросомах холестерин-7а-гидроксилазы.Это ферментативное 7а-гидроксилирование холестерина является шагом, определяющим скорость биосинтеза желчных кислот, активность фермента холестерин-7а-гидроксилазы регулируется количеством желчных кислот, воспринимаемых гепатоцитами из воротной вены, посредством торможения по принципу обратной связи.Последующие шаги биосинтеза состоят в перемещении двойной связи от 7а-гидроксихолестерина к 7а-гидроксихолестен-4-еn-3-ону.Этот промежуточный продукт представляет собой пункт разветвления для синтеза в направлении холевой кислоты или хенодезоксихолевой кислоты.При помощи 12а-гидроксилирования посредством расположенной в эндоплазматическом ретикулуме 12а-гидроксилазы происходит синтез холевой кислоты.После прохождения этого места разветвления в цитозоле происходит насыщение двойной связи и восстановление 3-оксо-группы в 3а-гидроксигруппу.Когда эти ферментативные реакции на стероидном ядре заканчиваются, причем две гидроксигруппы являются предступенями для хенодезоксихолевой кислоты или три гидроксигруппы являются предступенями холевой кислоты в стероидном ядре, то происходит укорочение боковой цепи в митохондриях после гидроксилирования у С-24 и образуются С-24 желчные кислоты, т.е. хенодезоксихолевая или холевая кислоты (детали биосинтеза см. Matern и Gerok)|52|(рис.34.8).


Конъюгация желчных кислот в печени.

В печени желчные кислоты перед выделением в желчь конъюгируют с аминокислотами глицином и таурином в соотношении 3:1.Возможно также сульфатирование (65), глюкуронирование (2) и глюкозирование желчных кислот (55) в печени человека (рис.34.9).При помощи этих конъюгаций повышается растворимость желчных кислот.Выделяемые с желчью желчные кислоты в кишечнике подвергаются, если они всасываются неизмененными, дальнейшему метаболизму при помощи бактериальных ферментов.


Интерстициальное всасывание и бактериальный

метаболизм желчных кислот.

Неконъюгированные желчные кислоты и глицин-конъюгированные дигидроксилированные желчные кислоты могут всасываться пассивной диффузией в верхней тонкой кишке, поскольку эти желчные кислоты не диссоциируют.Поскольку в просвете верхней тонкой кишки значение рН составляет от 5,5 до 6,5 и значения рК для свободных неконъюгированных желчных кислот составляют от 5,0 до 6,5 и для глицин-конъюгированных желчных кислот составляют между 3,5 и 5,2, то резорбция этих желчных кислот возможна в верхней тонкой кишке. Основное количество конъюгированных желчных кислот, в особенности, полярных таурин-конъюгированных желчных кислот и тригидроксилированных желчных кислот, резорбируется вследствие диссоциации и посредством активного транспорта в терминальном отделе подвздошной кишки.

Желчные кислоты, которые поступают в слепую кишку, подвергаются воздействию бактериальных ферментов.Под действием этих ферментов происходит деконъюгация глицин- и тауринкоагулированных желчных кислот, к 7а-дегидроксилированию и к 7а-дегидрогенизированию желчных кислот.Вследствие бактериального 7а-дегидроксилирования из первичных желчных кислот, холевых и хенодезоксихолевых кислот приводит к 7-кетолитохолевой кислоте, которая в печени превращается в третичную желчную кислоту, уродезоксихолевую кислоту (рис.34.8)


Транспорт желчных кислот в воротную вену.

Резорбируемые в кишечнике желчные кислоты вскоре исключительно кровью воротной вены переводятся в печень. В крови желчные кислоты транспортируются главным образом с альбумином, а также будучи связанным с ЛПВП. Концентрация желчных кислот в крови воротной вены составляет 800 мкг/л (20 мкМ/л), т.е. примерно в 6 раз выше, чем в периферической крови. После еды концентрация желчных кислот в крови воротной вены повышается от 2 до 6 раз.


Поглощение желчных кислот

или секреция печенью

Гепатоцеллюлярное поглощение желчных кислот из синусоидальной крови исключительно эффективно, поскольку при одноразовом пассаже крови более чем 80% желчных кислот экстрагируется из портальной крови гепатоцитами. Поглощение желчных кислот представляет собой осуществляемый переносчиком, зависимый от натрия транспорт, который определяется активностью Nа 5+ 0, К 5+ 0 - АТФазы и управляется кинетикой Михаэлиса-Ментена. При этом максимальная скорость поглощея (V 4max 0) печенью желчных кислот больше, чем транспортный максимум (Т 4m 0) желчной экскреции (см.рис. 34.2).

После коньюгации желчных кислот в гепатоцитах происходит секреция желчных кислот в желчные канальцы. Секреция желчных кислот в желчные канальцы также осуществляется с помощью переносчика, хотя и независимого от натрия, причем физиологический внутриклеточный отрицательный мембранный потенциал предоставляет необходимую силу для канальцевой экскреции ионов желчных кислот в желчные канальцы (58)(см.рис.34.2). Рецепторные и транспортные белки гепатоцитов для поглощения, внутриклеточного транспорта и секреции желчных кислот в желчь частично охарактеризованы (11).


Образование желчи.

Желчь представляет собой водный раствор желчных кислот, холестерина, фосфолипидов, билирубина и неорганических электролитов. Образование жнлчи производится посредством гепатоцитов, причем желчные канальцы изменяют концентрацию и состав желчи. По это причине различают гепатоцитарное образование желчи и канальцевые образование желчи.


Гепатоцитарный поток желчи.

При гепатоцитарной секреции желчи в желчные канальцы можно различать зависимый от желчных кислот поток желчи и независимый от желчных кислот поток желчи. Это различие получается из линейного соотношения между гепатоцитарной секрецией желчных кислот и потоком желчи. Также если гепатоциты больше не выделяют желчных кислот, еще происходит поток желчи в желчные канальцы, так называемый независимый от желчных кислот гепатоцитарный поток желчи. У людей образуется около 11 каналикулярной желчи на 1 мкмоль выделяемых желчных кислот. Поскольку при интактной энтерогепатической циркуляции выделяется около 15 мкмолей желчных кислот в минуту, это обозначаетзависимый от желчных кислот каналикулярный поток желчи, равный примерно 225 мл/сутки. Поскольку независимый от желчных кислот каналикулярный поток желчи составляет в то же время около 225 мл/сут и дуктулярная секреция покрывает 150 мл/день, у людей ежедневно вырабатывается около 600 мл желчи (рис.34.10)(77).

Зависимые от желчных кислот каналикулярное образование желчи происходит таким образом, что желчные кислоты путем активного транспорта выделяют в качестве анионов через мембрану желчного канальца в каналец. Для выравнивания осмотического равновесия и для достижения электронейтральности в желчный каналец поставляются вода и ионы натрия, через межклеточные "тесные соединения" в желчный каналец (см.рис.34.2). С транспортом желчных кислот в желчные канальцы связан транспорт лецитина и холестерина в желчь, но не транспорт билирубина. Независимый от желчных кислот каналикулярный поток желчи, вероятно, происходит при помощи опосредуемого Nа 5+ 0/К 5+ 0-АТФ-азой Nа 5+ 0-транспорта и стимулируется фенобарбиталом. Он примерно равен зависимому от желчных кислот каналикулярному образованию желчи.


Поток желчи в ходах.

В желчных ходах происходит секреция и/или резорбция неорганических электролитов и воды, причем гормон секретин ответственен за секрецию в ходах. Примерно 30% основного потока желчи относится к секреции желчи в ходах.


Нарушение метаболизма желчных кислот

при заболеваниях печени

Циркулирующие в кишечно-печеночном круге желчные кислоты выполняют важные функции (табл.34.3). Из этих главных функций происходят клинические последствия, причем при заболеваниях печени происходят нарушения в метаболизме желчных кислот (31).Болезни печени могут приводить к нарушениям синтеза, конъюгации и желчной секреции желчных кислот, а также к нарушениям поглощения желчных кислот из воротной вены.

Нарушения биосинтеза желчных кислот наиболее выражены при циррозе печени (52).При циррозе печени наблюдается уменьшенное образование холевой кислоты вследствие понижения активности 12а-гидроксилазы при биосинтезе холевой кислоты в печени.Понижение интенсивности биосинтеза холевой кислоты приводит к понижению запаса холевой кислоты у больных с циррозом печени.Поскольку бактериальное 7а-дегидроксилирование холевой кислоты в дезоксихолевую при циррозе печени нарушено, то при циррозе печени наблюдается также уменьшение запаса дезоксихолевой кислоты.Хотя при циррозе печени биосинтез хенодезоксихолевой кислоты протекает без повреждений, общий запас желчных кислот вследствие уменьшения синтеза холевой кислоты уменьшается наполовину.Вследствие уменьшения запаса желчных кислот имеет место уменьшение концентрации желчных кислот в тонком кишечнике при приеме пищи.Таким образом, резорбция жирорастворимых витаминов и жиров нарушается, по этой причине при циррозе печени имеют место куриная слепота (недостаток вит.А), остеомаляция (недостаток витамина Д), нарушения свертывания крови (недостаток вит.К) и стеаторрея.

Конъюгация желчных кислот с аминокислотами глицином и таурином в норме происходит при соотношении 3:1 (52).При тяжелом гепатите конъюгация холевой кислоты с глицином понижена, так что определение скорости этой конъюгации предлагалось в качестве прогностического теста для течения острого гепатита.Напротив, сульфатирование желчных кислот при заболеваниях печени не уменьшается, поскольку активности сульфотрансфераз желчных кислот в пунктатах у больных с легкими повреждениями печеночной паренхимы или у больных с тяжелым лостазом примерно равны (50).В отличие от сульфатирования, ферментативное глюкуронирование желчных кислот при циррозе печени по сравнению с нормой понижено, как показали измерения активности УДФ-глюкуронилтрансферазы желчных кислот в ткани печени при различных заболеваниях печени (56).Также билирубин в печни человека конкурентно тормозит глюкуронирование желчных кислот (53). То, что все же при холестазе у человека наблюдается повышенное выделение глюкуронидов желчных кислот в моче, можно объяснить глюкуронированием желчных кислот в почках человека (56).

При заболеваниях печени, в особенности при циррозе печени, может быть нарушена секреция желчных кислот (14, 37). Уменьшение секреции желчных кислот при циррозе печени приводит к упомянутой стеаторрее и к уменьшению резорбции жирорастворимых витаминов с соответствующим синдромом недостаточности.

Печеночное поглощение желчных кислот при заболеваниях печени также нарушено. В то время как у здоровых печень экстрагирует около 85% коньюгированных тригидроксилированных желчных кислот и 60-70% коньюгированных дигидрооксилированных желчных кислот из крови воротной вены, при заболеваниях печени вследствие внепеченочного или внутрипеченочного портосистемного шунта кровотока, вследствие уменьшенной способности гепатоцитов поглощать желчные кислоты из крови и вследствие рефлекса желчных кислот из желчи в кровь имеет место повышение концентрации желчных кислот из крови. Это явление используется в диагностических целях, поскольку повышение концентрации желчных кислот в сыворотке представляет собой чувствительный параметр для распознавания заболеваний печени.


Метаболизм желчных кислот и холестаз.

Холестаз можно определить как нарушение секреции желчи, причем каждая стадия секреции, начиная от образования желчи в мембране желчного канальца гепатоцитов (внутрипеченочный холестаз) до выделения желчи через сосочек двенадцатиперстной кишки (внепеченочный холестаз).Следствием холестаза является повышенная концентрация желчных кислот в гепатоцитах с торможением по принципу обратной связи ферментов, определяющих биосинтез желчных кислот, то есть холестерин-7а-гидроксилазы.Это приводит к уменьшению биосинтеза желчных кислот.Посредством повышения внутрипеченочной концентрации желчных кислот, при холестазе желчные кислоты применяются в качестве субстратов для сульфатирования, глюкуронирования и гидроксилирования.При этом образуются не только сульфатированные и глюкуронированные желчные кислоты, а также 1- и 6-гидроксилированные желчные кислоты в печени при холестазе (1).

Наблюдаемые при холестазе повышенные внутрипеченочные концентрации желчых кислот, в особенности дегидроксилированные желчные кислоты, как хенодезоксихолевые кислоты, могут разрушать гепатоциты в качестве детергентов.Они могут изменять состав плазматических мембран гепатоцитов, а также нарушать биотрансформацию эндогенных субстратов (желчных кислот холестерина) и экзогенных веществ (медикаменты), например, посредством торможения цитохрома Р450 (67,68,76).Таким же образом внутрипеченочное повышение концентраций желчных кислот может усиливать холестаз в форме порочного круга.

Это одна из сложных интегральных метаболических функций печени. Желчь - это и экскреторный и секреторный продукт печени, в состав которого входят вещества, являющиеся одновременно баластными и даже токсичными для организма метаболитами, подлежащими удалению из организма, и вещества, активно участвующие в ряде физиологических процессов пищеварения в кишечнике, которые способствуют ращеплению и всасыванию пищевых веществ.

Нормальная желчь состоит из желчных кислот, холестероина, фосфолипидов, билирубина, белков, минеральных ионов и воды. Основные инградиенты гидрофобны и становятся гидрофильными лишь в виде сложного макромалекулярного комплекса - желчной мицеллы. Конечный продукт желчеобразования - желчь состоит из дух фракций: первичной - печеночно-клеточной и вторичной - протоковой желчи.


ПИГМЕНТНЫЙ ОБМЕН

При физиологических условиях концентрация билирубина в плазме составляет 0,3-1,0 мг/дл (5,1-17,1 мкМоль/л).Если уровень билирубина в плазме составляет около 3 мг/дл (50 мкМоль/л), то клинически это проявляется в форме желтухи склер, слизистых оболочек и кожи.

Билирубин происходит из ферментативного разрушения гемоглобина или гемопротеинов (цитохром 450, цитохром В5, каталаза, триптофанпирролаза, миоглобин).После ферментативного освобождения гема из гемоглобина или гемопротеинов посредством микросомальных гемоксигеназ в мембране цитоплазматического ретикулума посредством активирования кислорода при воздействии НАДФ-цитохром-с-редуктазы происходит образование а-гидрокси-гема, причем активированный кислород воздействует на а-метиновые мостики циклического тетрапиррола.Благодаря этому расщепляется протопорфириновое кольцо при освобождении монооксида углерода, и возникает комплекс биливердина с железом.После гидролиза комплекса биливердина с железом на железо и биливердин IXа посредством биливердинредуктазы цитозоля происходит восстановление центрального метинового кольца биливердина в биливердин IXa2 (45).Поскольку три фермента (микросомальная гемоксиназа и НАДФН-цитохром-с-редуктаза, а также биливердинредуктаза цитозоля), которые катализируют образование билирубина из гема, в форме ферментативного комплекса на поверхности эндоплазматического ретикулума, биливердин на этом комплексе восстанавливается в билирубин (рис. 34.11)(91).Таким образом, образованный из биливердина билирубин представляет собой субстрат для билирубин-УДФ-глюкуронилтрансферазы, содержащейся в эндоплазматическом ретикулуме.УДФ-глюкуронилтрансфераза катализирует образование билирубинмоноглюкуронидов.Затем происходит синтез билирубиндиглюкуронидов, осуществляемый УДФ-глюкуронилтрансферазой (рис.34.12)(6).Для образования билирубиндиглюкыронидов из билирубинмоноглюкуронидов обсуждались возможности спонтанного образования диглюкуронидов (83) или ферментативный перенос глюкуроновой кислоты от молекулы билирубинмоноглюкуронида при связывании билирубиндиглюкуронидов посредством билирубинглюкуронозид-глюкуронозилтрансферазы (40).посредством глюкуронирования нерастворимый в воде билирубин приобретает водорастворимость.

Нерастворимость в воде образующегося при разложении гема билирубина IXa основывается на том, что образуются внутримолекулярные водородные мостики между группой пропионовой кислоты пиррольного кольца и азотом не находящихся по соседству внешних пиррольных колец.Таким образом достигается ?стерически складывание билирубина, что уменьшаются гидрофобные,то есть липофильные свойства.По этой причине неконъюгированный билирубин IXa диффундирует в мозг, плаценту и слизистую кишечника.При воздействии световой энергии с длиной волны от 400 до 500 нм внешние пиррольные кольца молекулы билирубина IXa могут поворачиваться вокруг двойной связи.Посредством такой фотоизомеризации молекулы билирубина в так называемый фотобилирубин больше не могут образовываться внутримолекулярные водородные мостики.Таким образом, билирубин станивится водорастворимым и, следовательно, он может без конъюгации с глюкуроновой кислотой выделяться в желчь.Эффект фотоизомеризации билирубина применяется в случае фототерапии желтушных новорожденных.Посредством облучения кожи синим светом, находящийся в коже билирубин IXA переводится в водорастворимый фотобилирубин, который связывается с альбумином и кровью переносится к печени и там выводится в желчь.С помощью такой фототерапии удается снизить уровень неконъюгированного били-


рубина в плазме до концентрации 5 мг/дл (85 мкМоль/л), дальнейшее снижение уровня билирубина посредством фототерапии невозможно.

Количественно ежедневно у взрослых образуется около 250-350 мг билирубина на кг при распаде гема.При этом главным источником образования билирубина является гем гемоглобина.Около 70% ежедневно образующихся желчных пигментов возникают из гемоглобина при распаде эритроцитов в ретикуло-эндотелиальной системе (в селезенке, костном мозге и в печени).

Участие печени в ежедневном образовании билирубина составляет 10-37%, причем в печени главным источником служат микросомальные цитохромы, каталаза, триптофанпирролаза и митохондриальный цитохром b.Также в плазме связанные с гаптоглобином гемоглобин,метгемоглобин или метгемальбумин служат источником печеночного образования билирубина,поскольку гепатоциты воспринимают компоненты гема для образования билирубина.


Транспорт билирубина

В плазме транспортируется как конъюгированный с глюкуроновой кислотой билирубин, так и неконъюгированный, связанный с альбумином билирубин.При этом конъюгированный с глюкуроновой кислотой билирубин характеризуется незначительным сродством с альбумином, как неконъюгированный билирубин.Таким образом, незначительная часть билирубинглюкуронида при желтухе не связана с альбумином, она фильтруется через клубочки.Небольшая часть не реабсорбируется в канальцах, а выделяется с мочой и обусловливает наблюдаемую при холестазе билирубинурию.Также наблюдается очень прочное, вероятно, ковалентное связывание билирубинглюкуронида с альбумином у больных с холестазом с коньюгированной гипербилирубинемией (89).Поскольку ковалентно связанный с альбумином билирубинглюкуронид обнаруживает незначительный печеночный и почечный клиренс, объяснение состоит в том, что улучшение желтухи в плазме сопровождается еще повышенными значениями конъюгированного билирубина, в то время как в моче билирубин уже больше не наблюдается.

Неконъюгированный билирубин в плазме имеет высокое сродство с местом связывания альбумина, таким образом, неконъюгированный билирубин в плазме появляется в нерастворенном виде.При высокой концентрации билирубина в плазме неконъюгированный билирубин связывается с альбумином на двух других местах с незначительным сродством.Из мест связывания с меньшим сродством неконъюгированный билирубин может вытесняться при помощи свободных желчных кислот, из мест связывания с более высоким связыванием посредством медикаментов, таких, как сульфаниламиды, анальгетики и нестероидные антиревматики.

В печени находящийся в плазме крови связанный с альбумином неконъюгированный билирубин, а также конъюгированный с глюкуроновой кислотой билирубин очень быстро воспринимается синусоидной стороной гепатоцитов.Прием гепатоцитами билирубина производится рецепторными белками (5) и соответствует кинетике насыщения по Михаэлису-Ментену.Конгъюгированный билирубин, бромсульфалеин, и синдоциановый зеленый также воспринимаются теми же рецепторными белками на синусоидной стороне гепатоцитов, в то время как желчные кислоты не конкурируют с билирубином за поглощение их гепатоцитами.

После транспорта билирубина через плазматическую мембрану синусоида гепатоцитов билирубин связывается на транспортных белках в цитозоле; также обсуждается вопрос о связанном с мембранами интрагепацитарным переносом билирубина.В гепатоцитах билирубин, независимо от того, забирается ли он из плазмы или образуется в гепатоцитах из гемопротеинов, переводится при помощи микросомальной билирубин-УДФ-глюкуронилтрансферазы в билирубиндиглюкуронид.Перед тем, как образующийся в гепатоцитах билирубин или воспринятый гепатоцитами билирубин подвергается глюкуронированию,для части билирубина возможен рефлюкс в плазму с возобновленным гепатоцитарным поглощением билирубина.В небольшой части также возможна внутрипеченочная деконъюгация билирубинглюкуронида с рефлюксом неконъюгированного билирубина в плазму.На этой основе можно объяснить, почему у больных с холестазом также наблюдаются повышенные концентрации неконъюгированного билирубина в плазме.

После конъюгации билирубина глюкуронированный билирубин, вероятно, с помощью переносчика, выделяется через мембрану канальца в желчь (рис.34.13).Бромсульфалеин, индоциановый зеленый и рентгеноконтрастные вещества желчных путей конкурируют за систему транспорта билирубина в мембране желчного канальца, которая подчиняется кинетике насыщения.В общем, секреция билирубина посредством мембран желчного канальца при переносе билирубина из плазмы в желчь представляет собой шаг, определяющий скорость.Желчные кислоты, напротив, сецернируются посредством другой транспортной системы мембран желчный канальцев, в желчь.Поскольку при синдроме Дубина-Джонсона имеет место генетический дефект транспортной системы мембраны желчного канальца для секреции конъюгированного билирубина и бромсульфалеина, то желчные кислоты сецернируются в желчь независимо от мембраны канальца.Хотя желчные кислоты используют другую транспортную систему, по сравнению с конъюгированным билирубином, в мембрану желчного канальца, то обсуждается секреция билирубина в желчь в форме смешанных мицелл с желчными кислотами, фосфолипидами и холестерином.Таким образом объясняется секреция водорастворимого неконъюгированного билирубина IXа в желчь, которая в норме составляет меньше, чем 10% от общего билирубина в печени и при гемолитической анемии может составлять до 3% каналикулярной билирубиновой секреции.Поскольку неконъюгированный билирубин растворим в желчи, то этим объясняется частота образования билирубиновых пигментных желчных камней при хроническом гемолизе.

В желчных путях и в кишке сецернируемый билирубинглюкуронид не всасывается, но проходит через тонкий кишечник и гидролизуется в терминальном отделе тонкой кишки и толстой кишки при помощи бактериальной в-глюкуронидазы.Билирубин восстанавливается бактериями толстого кишечника до уробилиногена и частично окисляется до уробилина в фекалиях.Менее чем 20% ежедневно образуемого в толстом кишечнике уробилиногена участвуют в кишечно-печеночном цикле: он всасывается втонком кишечнике, транспортируется в желчь, в то время как оставшиеся 10% находятся в переферической циркуляции и потом выводятся в мочу (см.889).При гемолизе, гепатоцеллюлярных заболеваниях печени и при портосистемном шунте выведение уробилина в моче увеличивается.


ОБМЕН ГОРМОНОВ

Печень тесно связанна с обменом гормонов. Нарушения обмена гормонов клинически практически не проявляются при острых процессах, но достаточно выражены при хронических заболеваниях и, прежде всего, церрозах.

Гормональные нарушения делятся на:

1)дисекреторные - указывают на увеличение или уменьшении продукции гормона, что связано с поражением звена управления или самой эндокринной железы(пример,увеличение содержания катехоламинов при печеночной недостаточности);

2)гипоэкскреторные-нарушения экскреции гормонов с мочей и желчью (пример, нарушение кон'югирования стероидов при циррозах, и, следовательно, выведение их с мочей, или гинекомастия при обтурации желчного протока);

3)гипометаболические - различные нарушения нормального нарушения нормального обмена гормонов в печени (пример, вторичный альдостеронизм, синдрос Иценко-Кушинга при циррозах).


ДЕТОКСИЦИРУЮЩАЯ ФУНКЦИЯ

Эндогенно и экзогенно вводимые вещества могут в организме чаловека вследствие их растворимости в липидах действовать токсически.Экзогенно вводимые липидорастворимые вещества в слизистой тонкого кишечника могут поступать с кровью в печень и, в зависимости от печеночного клиренса, участвовать в системной циркуляции и попадать в другие органы.Они не могут, как и эндогенные, липидорастворимые вещества, выделяться почками, а после гломерулярной фильтрации вследствие их растворимости в липидах подвергаться в канальцах почек обратной диффузии.

Обезвреживание (биотрансформация) липидорастворимых веществ достигается, как правило, в две фазы, посредством переведения их в водорастворимые метаболиты.В фазе 1 обезвреживанию подвергаются липидорастворимые вещества окислению, восстановлению или гидролизу.Продукты реакции в фазе 1 обезвреживания нередко в фазе 2 подвергаются реакциям конъюгации.Таким образом, возникают водорастворимые конъюгаты, которые выделяются почками или в желчь.Как правило, токсические вещества проходят обе фазы обезвреживания, ло того, как они в виде конъюгатов элиминируются из организма человека.

Посредством ферментативных реакций фазы 1, таких как окисление, восстановление или гидролиз, функциональные группы, такие как, например, гидроксильные группы, переводятся в липидорастворимое состояние.Важнейшая ферментативная система фазы 1 обезвреживания - это цитохром-Р450-монооксигеназная система.Она локализуется в эндоплазматическом ретикулуме и состоит из двух ферментов; НАДФН-цитохром-Р450-редуктазы и цитохрома Р450.Окисление органических соединений посредством цитохром-Р450-монооксигеназной системы в качестве фазы 1 обезвреживания достигается посредством размещения подлежащего обезвреживанию соединения на активном центре цитохрома Р450.Цитохром-Р450 представляет собой содержащий гем фермент, который ответственен за активирование кислорода и присоединение кислородного атома в органическое соединение при образовании гидроксисоединение (рис.34.14).Восстановительные эквиваленты поставляются НАДФН-цитохром Р450-редуктазой, причем НАДФН переводится в НАДФ+.Таким образом, цитохромР450-монооксигеназная система играет центральную роль не только при обезвреживании чужеродных веществ, но также и при биосинтезе стероидных гормонов и желчных кислот.Возникающие таким образом гидроксилированные продукты фазы 1 обезвреживания могут, наконец, подвергаться реакциям конъюгации фазы 2 обезвреживания, например, глюкуронированию (рис.34.14).

Из реакций конъюгации при обезвреживании эндогенных (табл.34.4) и экзогенных веществ глюкуронирование у людей является самым важным процессом.При этой реакции конъюгации посредством УДФ-глюкуронилтрансферазы глюкуроновая кислота от УДФ-глюкуроновой кислоты переносится на чужеродное вещество или эндогенное вещество (билирубин, желчные кислоты, стероидные гормоны) при освобождении УДФ (12,54).

Поскольку конъюгаты глюкуроновой кислоты растворимы в воде, посредством глюкуронирования, которое возможно как в печени, так и вне печени (53,56), элиминация липидорастворимых веществ становится возможной через почки и желчь.


Биотрансформация при заболеваниях печени.

В то время как рпи легком гепатите или при активности ферментов биотрансформации в печени незначительно отличаются от контролей , у больных с тяжелым гепатитом и тяжелым активным хроническим гепатитом или циррозом печени наблюдается понижение цитохрома-Р450 в печени.Также активность УДФ-глюкуронилтрансферазы желчных кислот печени человека понижается при циррозе печени (56).По этой причине при тяжелых заболеваниях печени, в особенности, при циррозе печени, метаболизм и элиминация лекарств могут быть значительно понижены.При заболеваниях печени, тем не менее, изменяется не только биотрансформация медикаментов, но могут также необратимо медикаменты повреждать печень.


ОБЩАЯ ЭТИОЛОГИЯ ЗАБОЛЕВАНИЙ ПЕЧЕНИ

Экологические факторы, вызывающие заболевания печени,весьма разнообразны. В то же время можно выделить несколько основных групп:


ИНФЕКЦИОННЫЕ ФАКТОРЫ

Основным инфекционным этиологическим фактором, вызывающим повреждение печени, являются вирусы. В настоящее время известны пять вирусов, вызывающих развитие вирусных гепатитов.

1. Вирус гепатита А.

2. Вирус гепатита В.

3. Вирус гепатита ни А ни В:

а) вирус гепатита С;

б) вирус спорадического гепатита ни А ни В;

в) вирус эпидемического гепатита ни А ни Б.

Эти вирусы обладают прямой гепатотропностью и оказывают прямое воздействие на гепатоциты. Другие виды вирусов при их циркуляции в крови могут оказывать влияния на печень, приводя при этом к печеночной симптоматики которая присоединяется к основному заболеванию (инфекционному мононуклеозу, жельой лихорадке, цитомегалии, герпесу и некоторым видам энтеровирусной инфекции).

Бактерии, как правило, не приводят к развитею собственно заболеваниям печени, но могут нарушать ее функции и появлению различных печеночных синдромов. Выражение заболеваниея отмечаются при лептоспирозе, токсоплазмозе, бруцелезе. Хронические заболевания печени развиваются при туберкулезе, сифилисе.

Грибковые поражения печени, как правило, вторичны,тоесть возникают на фоне какого-то другого заболевания.

Можно говорить о паразитарном поражении печени, например, эхинококком, или желчевыводящей путей, например, описторхиями. Можно назвать поражения печени при аскаридозе, амебиазе.


ТОКСИЧЕСКИЕ ФАКТОРЫ


Роль токсического этиологического агента могут играть очень многие вещества неорганической и органической природы.

К первым относятся некоторые металлы металлоиды, а также их соединения. Например, бериллий, золото, фосфор, мышьяк, кобальт и другие.

К естественным органическим гепатоттоксическим агентам можно отнести токсины растений - иктерогенин; микотоксины - афлатоксин; некоторых бактерий - эндотоксины.

Среди искусственных органических соединений наибольшее значение имеют галогеновые производные алканов, олефинов и ароматических соединений, а также нитро- и аминоароматические соединения.

Что касается медикаментов, то лишь немногие из них обладают истинной гепатотоксичностью. Например, тетрациклин, гризеофульвин и другие. Вместе с тем, известно несколько сотен лекарств, с большим или меньшим постоянством вызывающих повреждение печени. Это их действие, в большинстве случаев, обусловлено не собственно гепатотоксическим эффектом, а извращенной реакцией организма на введение препарата.

Следовательно, можно выделить два типа повреждения печени токсического характера: 1. Прямое повреждающее действие этиологического агента; 2. Повреждения опосредованные реакциями гиперчувствительности.

Первые - прямое повреждение "предсказуемо", поскольку развивается, как правило, у всех индивидуумов при введении определенной дозы действующего агента. Их еще называют "дозозависимыми" повреждениями печени.

Поражение такого рода вызывают, как правило, промышленные органические и неорганические яды.

Повреждение печени, развивающееся в связи с гиперчувствительностью к этиологическому агенту, может быть обусловлено:

1) иммунными реакциями гиперчувствительности немедленного типов;

2) метаболическими реакциями или идиосинкразией, то есть, генетически обусловленным аномальным метаболизмом химических соединенй.

Эти поражения называют также "непредсказуемыми" и "недозозависимыми".

Поражения подобного типа чаще жругих вызываются лекарственными средствами, например, фторотан, альфа-метилдофа, сульфаниламиды.

АЛКОГОЛЬ также является важным этиологическим фактором в развитии заболеваний печени. Алкоголь непосредственно поражает гепатоциты, хотя и доказано его сенсибилизирующее влияние на печень по отношению к действию других гепатотоксинов.


АЛИМЕНТАРНЫЕ ФАКТОРЫ


Сюда прежде всего можно отнести белковую несбалансированность питания. Достаточным считается содержание белка в пищевом рационе около 15-20%. Если в пище содержится белка менее 8%, а тем более при сочетании с дефицитом цистеина или витамина Е, то это может привести к жировой инфильтрации печени с последующим переходом в жировую дистрофию.


ИММУНОГЕННЫЕ ПОВРЕЖДЕНИЯ


Особенности строения печени, прохождение через нее токсических веществ и их детоксикация, большое содержание клеток РЭС создают условия для повреждения печеночной ткани и развитию аутоиммунных заболеваний. Аллергические гепатиты развиваются при парентеральном введении сыворотки, вакцин, при пищевой и лекарственной аллергии.


ГЕМОДИНАМИЧЕСКИЕ РАССТРОЙСТВА


Поскольку печень выаолняет такое огромное количество функций, то это требует высокого уровня кровоснабжения. нарушения печеночного кровотока (и притока и оттока крови) приводит к развитию гипоксии гепатоцитов и их последующих гибели и замещения их соединительной тканью.


ФАКТОРЫ, МЕХАНИЧЕСКИ ПРЕПЯТСТВУЮЩИЕ

ОТТОКУ ЖЕЛЧИ


Сюда можно отнести закупорку желчных путей, что приводит к желчной гипертензии и разрыву желчных ходов, повреждению гепатоцитов.


ОБЩИЙ ПАТОГЕНЕЗ ЗАБОЛЕВАНИЙ ПЕЧЕНИ


Работами Тареева и Давыдовского установлено, что на любое повреждающее воздействие печень отвечает стандартной реакцией, в которой можно выделить ряд фаз:

1. Фаза нарушения энергитики и биохимизма.

Раньше всего повреждаются наиболее чувствительные субструктуры гепатоцитов - эндоплазматический ретикулум, митохондрии, лизосомы. (Рассказать нарушение метаболизма в гепатоците !!!).

2. Фаза регенерации печеночной ткани.

Активирующий сигнал на восстановление массы печени воспринимается не только гепатоцитами, но соединительно-тканными элементами, следовательно, параллельно идут процессы образования и гепатоцитов и соединительной ткани. Соотношение этих двух элементов регенерации зависит от многих факторов: массы поврежденной ткани, уровня повреждения печеночной дольки, активности патологического процесса в печени, условий кровоснабжения поврежденных участков паренхимы.


Информация о работе «Литература - Патофизиология (заболевания печени)»
Раздел: Медицина, здоровье
Количество знаков с пробелами: 123382
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
117350
0
0

... - учение о механизмах поддержания здоровья и выздоровления при болезни. Наряду с собственно патологическими изменениями и меха- низмами патологического развития, что составляет патогенез, патофизиология изучает механизмы предотвращения возникновения и развития патологического процесса, механизмы его ликвида- ции, компенсации и восстановления нарушенных функций и выздо- ровления, ...

Скачать
30735
0
0

... секреции HCl в желудке. Причиной панкреатической ахилии являются закупорка или сдавление протока поджелудочной железы, нарушение нейрогуморальной регуляции и секреции.  _Особенности мембранного пищеварения: .1) ферменты кишечных клеток и поджелудочной железы фиксируются на клеточных мембранах ворсинок, этому способствует и то, что2) энтеропептидаза вырабатывается клетками слизистой и ...

Скачать
92359
0
0

... зависит от вида и степени гормонального дисбаланса. Страдают в начале клетки-мишени, ферментные системы которых находятся под регулирующим действием соответствующих гормонов. При рассмотрении патофизиологии острого повреждния клетки следует отдельно остановиться на роли лизосомального аппарата. Существует много причин, приводящих к недостаточности функции лизо- - 23 -сом: угнетение ...

Скачать
13412
0
0

... функция дыхания. Интенсивность подъема температуры зависит от 2-х факторов патогенеза: 1. От количества эндогенных пирогенных веществ (интерлейкина 1, например) 2. От индивидуальной чувствительности центра терморегуляции (хорошо лихорадят кролики, плохо крысы - то пример видовой специфичности чувствительности центра терморегуляции). Вторая стадия лихорадка - после подъема температуры, ...

0 комментариев


Наверх