3.3. Цифровая рентгенография с экрана электронно-оптического преобразователя (ЭОП).

Система рентгенографии с экрана ЭОП (рис. 5) состоит, как и обычная система электронно-оптического преобразования для просвечивания, из ЭОП, телевизионного тракта с высоким разрешением, рентгеновского высоковольтного генератора и рентгеновского излучателя. Сюда же входит штатив для исследования, цифровой преобразователь изображения и другие компоненты.

При обычной методике рентгенографии с экрана ЭОП с помощью 100 мм фотокамеры или кинокамеры переснимается оптическое изображение на выходном экране преобразователя.

В цифровой же системе сигнал, поступающий с видеокамеры, аналого-цифровым преобразователем трансформируется в набор цифровых данных и передается в накопительное устройство. Затем эти данные, в соответствии с выбранными исследователем параметрами, компьютерное устройство переводит в видимое изображение.

Рис.5 Цифровая рентгенография с экрана ЭОП

1-генератор; 2-рентгеновская трубка; 3-пациент; 4-ЭОП; 5-видеокамера;

6-аналого-цифровой преобразователь; 7-накопитель изображений;

8-видеопроцессор; 9-сеть; 10-цифро-аналоговый преобразователь;

11-монитор; 12-снимок; 13-рентгенолог.

 

3.4. Цифровая люминесцентная рентгенография (ЦЛР).

Применяемые в ЦЛР (рис.6) пластины-приемники изображения после их экспонирования рентгеновским излучением последовательно, точка за точкой, сканируются специальным лазерным устройством, а возникающий в процессе лазерного сканирования световой пучок трансформируется в цифровой сигнал. После цифрового усиления контуров и контрастности элементов изображения оно лазерным принтером печатается на пленке или воспроизводится на телевизионном мониторе рабочей консоли. Люминесцентные пластины-накопители выпускаются в стандартных формах рентгеновской пленки, помещаются вместо обычных комплектов «пленка-усиливающий экран» в кассету и применяются в обычных рентгеновских аппаратах.

Такая пластина обладает значительно большей экспозиционной широтой, чем общепринятые комбинации пленка-экран, благодаря чему значительно расширяется интервал между недо- и переэкспонированием. Этим способом можно получать достаточно контрастные изображения даже при резко сниженной экспозиционной дозе, нижним пределом которой является лишь уровень квантового шума. Поэтому даже при рентгенографии в палате у постели больного методика ЦЛР гарантирует получения качественного снимка.

При ЦЛР используются цифровые преобразователи, пространственное разрешение которых выше, чем у большинства используемых в настоящее время для обычной рентгенографии комбинаций экран-пленка. Все же особым преимуществом ЦЛР является передача малоконтрастных деталей, тогда как передача очень мелких деталей, таких, например, как микрокальценаты в молочной железе, остается прерогативой рентгенографии на рентгеновской пленке.

Рис. 6 Цифровая люминесцентная рентгенография.

1-генератор; 2-рентгеновская трубка; 3-пациент; 4-запоминающая

пластина; 5-транспортирующее устройство; 6-аналого-цифровой

преобразователь; 7-накопитель изображений;8-видеопроцессор; 9-сеть;

10-цифро-аналоговый преобразователь; 11-монитор; 12-снимок;

13-рентгенолог.

 

3.5. Селеновая рентгенография.

Селеновые детекторы представляют собой новейшую систему цифровой рентгенографии (рис. 7). Основной частью такого устройства служит детектор в виде барабана, покрытого слоем аморфного селена. Селеновая рентгенография в настоящее время используется только в системах рентгенографии грудной клетки. Характерная для снимков грудной клетки высокая контрастность между легочными полями и областью средостения при цифровой обработке сглаживается, не уменьшая при этом контрастности деталей изображения. Другим преимуществом селенового детектора является высокий коэффициент отношения сигнал/шум.

Рис.5 Цифровая селеновая рентгенография.

1-генератор; 2-рентгеновская трубка; 3-пациент; 4-селеновый барабан;

5-сканирующие электроды+усилитель; 6-аналого-цифровой преобразо-

ватель; 7-накопитель изображений; 8-видеопроцессор; 9-сеть;

10-цифро-аналоговый преобразователь; 11-монитор; 12-снимок;

13-рентгенолог.

4. Математические основы компьютерной томографии

Исследования внутренней структуры объектов с помощью рентгеновского излучения широко распространены и хорошо известны. Ослабление рентгеновского излучения вдоль луча, соединяющего источник и приемник, является интегральной характеристикой плотности исследуемого объекта. С математической точки зрения речь идет о задаче восстановления функции по ее интегральным значениям вдоль некоторого семейства лучей. Различные лучи соответствуют различным (относительно объекта) положениям источника и приемника излучения. Такая модель является простейшей, но во многих случаях хорошо отражает реальную ситуацию и подтверждается исследованиям реальных тестовых объектов. Плотность реальных объектов является функцией трех пространственных координат. Однако в классической компьютерной томографии трехмерный объект представляют в виде набора тонких срезов. Внутри каждого среза плотность считают функцией только двух переменных. При исследовании фиксированного среза систему источник-приемник устраивают таким образом, что регистрируются данные только по лучам, лежащим в тонком слое относительно центральной плоскости среза. Таким образом приходят к задаче восстановления функции двух переменных по ее интегральным значениям вдоль некоторого семейства лучей Для регистрации в веерной схеме, чаще встречающейся в реальных томографах, используется линейка детекторов, различные положения источника относительно объекта обеспечиваются вращением системы регистрации или объекта.


Информация о работе «Средства визуализации изображений в компьютерной томографии и цифровых рентгенографических системах»
Раздел: Медицина, здоровье
Количество знаков с пробелами: 83583
Количество таблиц: 1
Количество изображений: 12

Похожие работы

Скачать
50528
0
0

... более дорогостоящими, нежели обычные рентгеновские системы, однако по мере развития компьютерной техники и систем визуализации находят все более широкое применение. Цифровая рентгенодиагностика обеспечивается компьютерной технологией.Дисплей Блок долговременной памяти Устройство документирования Компьютер + память изображенияИнтерфейс данныхПриемник изображения Пациент Рентгеновский аппарат ...

Скачать
33118
0
7

... обычная система электронно-оптического преобразования для просвечивания, из ЭОП, телевизионного тракта с высоким разрешением, рентгеновского высоковольтного генератора и рентгеновского излучателя Рис.5 Цифровая рентгенография с экрана ЭОП 1-генератор; 2-рентгеновская трубка; 3-пациент; 4-ЭОП; 5-видеокамера; 6-аналого-цифровой преобразователь; 7-накопитель изображений; 8-видеопроцессор; 9-сеть; ...

Скачать
127846
0
0

... банковских систем. Наиболее популярны сегодня смешанные решения, при которых часть модулей банковской системы разрабатывается компьютерным отделом банка, а часть покупается у независимых производителей. Основными платформами для банковских систем в настоящее время считаются: 1. ЛВС на базе сервера PC (10,7%); 2. Различные модели специализированных бизнес-компьютеров фирмы IBM типа AS/400 ...

0 комментариев


Наверх