2.2 ВЯЗКОСТЬ
Вязкость - свойство жидкости оказывать сопротивление сдвигу одного слоя относительно другого под действием касательной силы внутреннего трения. Напряжение трения согласно закону Ньютона пропорционально градиенту скорости dC/dy
t=hdC/dy.
Коэффициент пропорциональности h носит название динамиче-ской вязкости
h= t/dv/dy.
Единицей динамической вязкости является 1Па.с.(паскаль-секунда).
Более распространённым является другой показатель - кинематическая вязкость , которая учитывает зависимость сил внутреннего трения от инерции потока жидкости. Кинематическая вязкость ( или коэффициент динамической вязкости) определяется выражением
g=h/r.
Единицей кинематической вязкости является 1м2/c. Эта величина велика и неудобна для практических расчётов . Поэтому используют величину в 104 меньше -1 см2/c = 1Cт(стокс) , или 1 сотую часть Ст - сСт (сантистокс). В нормативно-технических документах обычно ука-зывают кинематическую вязкость при 100°С - (g100) или при 50 °С -(g50). Для новых марок масел в соответствии с международными нормами указывается вязкость при 40°С (точнее при 37.8°С) - g40. Указанная температура соответствует 1000 по Фаренгейту.
На практике используются и другие параметры , характеризующие вязкость жидкостей. Часто используют так называемую условную или относительную вязкость , определямую по течению жидкости через малое отверстие вискозиметра (прибора для определения вязкости) и сравнению времени истечения с временем истечения воды. В зависимости от количества испытуемой жидкости , диаметра отверстия и других условий испытаний применяют различные показатели. В России для измерения условий вязкости приняты условные градусы Энглера (°Е), которые представляют собой показания вискозиметра при 20, 50 и 100°С и обозначаются соответственно °E20; °E50 и °E100 . Значение вязкости в градусах Энглера есть отношение времени истечения через отверстие вяскозиметра 200 см3 испытуемой жидкости к времени истечения такого же количества дистиллированной воды при t=20 С..
Вязкость жидкости зависит от химического состава , от температуры и давления. Наиболее важным фактором , влияющим на вязкость , является температура. Зависимость вязкости от температуры различна для различных жидкостей. Для масел в диапазоне температур от t = +50 0C до температуры начала застывания применяется фор-мула :
nж= n50 exp (A / Tжa )
где nж - значение кинематической вязкости при температуре Tж ( ° K), в cCm;
A и a - эмпирические коэффициенты.
Для некоторых рабочих жидкостей значения коэффициентов А и а приведены в табл. 1.
Таблица 1.
ВМГ3 | АМГ-10 | МГ-20 | МГ-30 | |
А* 10-8 | 10,98 | 10,82 | 40 | 94 |
а | 3,06 | 3,06 | 3,77 | 3,91 |
Зависимость вязкости от температуры, или так называемые вязкостно-температурные свойства рабочих жидкостей, оцениваются с помощью индекса вязкости (ИВ) , являющегося паспортной характеристикой современных масел . Масла с высоким индексом вязкости меньше изменяют свою вязкость при изменении температуры. При небольшом индексе вязкости зависимость вязкости от температуры сильная. ИВ определяется сравнением данного масла с двумя эталонами. Один из этих эталонов характеризуется крутой вязкостно-температурной характеристикой , т. е. сильной зависимостью вязкости от температуры , а другой - пологой характеристикой. Эталону с крутой характеристикой присвоен ИВ=0 , а эталону с пологой характеристикой - ИВ = 100.
В соответствии с ГОСТ 25371-82 ИВ вычисляется по формуле :
ИВ =(n-n1) /(n-n2)
или ИВ=(n-n1) / n3
где n - кинематическая вязкость эталонного масла при t= 40 0C с ИВ=0 и имеющим при t=100 0С такую же кинематическую вязкость как и данное масло, сСm ;
n1 - кинематическая вязкость данного масла при t=40 0C , сСm ;
n2 - кинематическая вязкость эталонного масла при t=40 0C, с ИВ=100 и имеющим при t=100 0C такую же вязкость , что и данное масло, сСm ;
n3= n- n2 , cCm .
Реальные рабочие жидкости имеют значения ИВ от 70 до 120.
Вязкость рабочей жидкости увеличивается с повышением давления. Для практических расчетов может использоваться формула, связывающая динамическую вязкость с давлением:
hр=h0 ap
где h0 и hр - динамические вязкости при атмосферном давлении и давлении р .
а - постоянный коэффициент; в зависимости от марки масла а = 1,002 - 1,004.
При низких температурах масла застывают. Температурой застывания (ГОСТ 20287-74) называется температура , при которой масло загустевает настолько , что при наклоне пробирки с маслом на 450 его уровень в течение 1 мин. остается неподвижным. При температуре застывания работа гидропривода невозможна. Минимальная рабочая температура принимается на 10-150 выше температуры застывания.
Вязкость рабочей жидкости оказывает непосредственное влияние на рабочие процессы и явления , происходящие как в отдельных элементах, так и в целом гидроприводе. Действие вязкости неоднозначно и требуются тщательные исследования для рекомендации оптимальной вязкости для конкретного гидропривода. Изменение вязкости является критерием достижения предельного состояния рабочей жидкости.
При чрезмерно высокой вязкости силы трения в жидкости настолько значительны , что могут привести к нарушению сплошности потока. При этом происходит незаполнение рабочих камер насоса , возникает кавитация, снижается подача , ухудшаются показатели надежности.
Но помимо этого , высокая вязкость рабочей жидкости позволяет снизить утечки через зазоры , и щелевые уплотнения . При этом объёмный КПД увеличивается . Но высокая вязкость одновременно увеличивает и трение в трущихся парах и снижает механический КПД. Одновременно снижается и гидравлический КПД , так как возрастают гидравлические потери.
Рекомендуется выбирать рабочую жидкость таким образом , чтобы кинематическая вязкость при длительной эксплуатации в гидроприводе с шестеренными насосами находилась в пределах 18-1500 cCm , в гидроприводе с пластинчатыми насосами 10 - 4000 cCm и в гид рабочей жидкости связаны с прочностью мароприводе с аксиально-поршневыми насосами 6-2000 cCm.
Смазывающие способности рабочей жидкости связаны с образованием на трущихся поверхностях масляной пленки и способностью её противостоять разрыву. Обычно , чем больше вязкость , тем выше прочность масляной. плёнки при сдвиге. Рабочая жидкость в гидроприводе должна предотвращать контактирование и схватывание трущихся поверхностей при малых скоростях скольжения в условиях граничного режима трения. Другими словами , рабочая жидкость , должна , во-первых , обладать противозадирными свойствами , во-вторых уменьшать износ поверхностей трения , создавая гидродинамический режим смазки , т. е. обладать противоизностными свойствами.
Улучшение противозадирных и противоизностных свойств рабочей жидкости достигается введением их в состав присадок. Обычно вводят несколько присадок или комплексные присадки , улучшающие сразу несколько показателей рабочей жидкости
Стабильность свойств - это способность рабочей жидкости сохранять работоспособность в течение заданного времени при изменении первоначальных свойств в допустимых пределах.
Стабильность характеризуется антиокислительной способностью и однородностью рабочей жидкости , которые находятся между собой в зависимости. При длительной эксплуатации в результате реакции углеводородов масла с кислородом воздуха в рабочей жидкости появляются смолистые нерастворимые фракции , которые образуют осадки и плёнки на поверхностях деталей , обуславливая старение рабочей жидкости. В результате может быть нарушено нормальное функционирование таких прециционных элементов гидропривода, как распределители , дроссели и т. п. .
На скорость окисления существенно влияют температура масла , интенсивность его перемешивания , количество находящихся в рабочей жидкости воды и воздуха , а также металлических загрязнений. Значительное каталитическое воздействие на процесс старения оказывает присутствие медных деталей. Окисление рабочей жидкости характеризуется изменением кислотнго числа РН , которое определяется количеством миллиграммов едкого калия (КОН) , необходимого для нейтрализации свободных кислот в 1 г. жидкости. Кислотное число РН и количество осадка используется для оценки старения жидкости (ГОСТ 5985-79). Оно является одним из параметров, определяющих работоспособность рабочей жидкости. Чтобы повысить антиокислительные свойства рабочей жидкости , используются присадки.
... 907 Обозначение трансмиссионных масел по ГОСТ 17479.2 – 85 ТМ – 5 – 18 Таблица №7 Таблица смазывания и заправки рабочих жидкостей автомобиля ЗИЛ – 130 Точка смазывания и заправки Колич. точек Объём, л Смазочный материал и рабочая жидкость Картер двигателя Одна 8,5 Масло М-4З/6Б1(АСЗ-6) Подшипники жидкостного насоса ПП Смазка ЦИАТИМ-201 или ЛИТА Валик ...
... Обозначение трансмиссионных масел по ГОСТ 17479.2 – 85 ТМ – 5 – 18 Таблица №7 Таблица смазывания и заправки рабочих жидкостей автомобиля ВАЗ-2107 Номер на карте смазки в приложении Точка смазывания и заправки Колич. точек Объём, л Смазочный материал и Рабочая жидкость 6 Картер двигателя вклчая масленный фильтр Одна 3,75 Всесезонно м-8в или М-6з12г1 6 ...
... совершенствуя качество продукции в соответствии с современными требованиями автомобильной техники и безопасности движения, научно-исследовательский коллектив «Химпрома» разработал и запатентовал новую рецептуру тормозной жидкости, лучшей среди отечественных и не уступающей зарубежным аналогам. Признавая авторитет кузбасских химиков в создании высококлассного продукта, ей было присвоено название « ...
... трубопровод=36 =36 =12 По принятому диаметру действительная скорость движения жидкости в трубопроводах (): всасывающий трубопровод сливной трубопровод ; ; напорный трубопровод ; ; Устойчивость одноковшовых погрузчиков Продольную устойчивость погрузчика рассчитывают относительно передней и задней оси опрокидывания. Погрузчик располагают так, чтобы его продольная ось была ...
0 комментариев