2.4.6. МОРФОЛОГИЧЕСКИЕ МЕТОДЫ

Основная идея морфологических методов систематически находить все мыслимые варианты решения проблемы или реа­лизации системы путем комбинирования выделенных элемен­тов или их признаков. В систематизированном виде морфоло­гический подход разработан и применен впервые швейцарским астрономом Ф. Цвикки и долгое время был известен как метод Цвикки.


Цвикки предложил три метода морфологического исследо­вания:

1. Метод систематического покрытия поля (МСПП), основан­
ный на выделении так называемых опорных пунктов знания в
любой исследуемой области и использовании для заполнения поля
некоторых сформулированных принципов мышления.

2.    Метод отрицания и конструирования (МОК), заключаю­
щийся в том, что на пути конструктивного прогресса стоят дог­
мы и компромиссные ограничения, которые есть смысл отрицать,
и следовательно, сформулировав некоторые предложения, полез­
но заменить их затем на противоположные и использовать при
проведении анализа.

3.    Метод морфологического ящика (ММЯ), нашедший наи­
более широкое распространение. Идея ММЯ состоит в том, что­
бы определить все мыслимые параметры, от которых может за­
висеть решение проблемы, представить их в виде матриц-строк,
а затем определить в этом морфологическом матрице-ящике все
возможные сочетания параметров по одному из каждой строки.
Полученные таким образом варианты могут снова подвергаться
оценке и анализу в целях выбора наилучшего. Морфологический
ящик может быть не только двумерным.

Построение и исследование по методу морфологического ящика проводится в пять этапов.

Этап 1. Точная формулировка поставленной проблемы.

Этап 2. Выделение показателей Pt, от которых зависит ре­шение проблемы. По мнению Ф. Цвикки, при наличии точной формулировки проблемы выделение показателей происходит ав­томатически.

Этап 3. Сопоставление показателю Pf его значений ;? А и све­дение этих значений в таблицу, которую Цвикки и называет мор­фологическим ящиком.

Набор значений различных показателей (по одному значению из каждой строки) представляет собой возможный вариант ре­шения данной проблемы (например, вариант {р1,, р22, ... , pkn}, обозначенный на рис. 2.7). Такие наборы называются вари­антами решения или просто вариантами. Общее число ва­риантов, содержащихся в морфологической таблице, равно N = К\К2 ... Кп, где Kt (i = 1, 2, ... , и) - число значений /-го пока­зателя.

д—20



24

Глава 1

ского пространства обычно рассматривается временной интер­вал (0, °°).

Аксиома 2. Пространство состояний Z содержит не менее двух элементов. Эта аксиома отражает естественное представле­ние о том, что сложная система может находиться в разных со­стояниях.

Аксиома 3. Система обладает свойством функциональной эмерджентности .

Эмерджентностъ (целостность) - это такое свойство систе­мы S, которое принципиально не сводится к сумме свойств эле­ментов, составляющих систему, и не выводится из них:

т

1

где yt - i-я характеристика системы S; т - общее количество характеристик.

При таком рассмотрении система является совокупностью моделей и, главное, отражает семантику предметной области в отличие от неинтерпретированных частных математических мо­делей. Другими словами, система - это совокупность взаимосвя­занных элементов, обладающая интегративными свойствами (эмерджентностью), а также способ отображения реальных объектов.

В рамках изучаемой дисциплины под сложной кибернетичес­кой системой понимается реальный объект с управлением и его отображение в сознании исследователя как совокупность моде­лей, адекватная решаемой задаче.

123 КЛАССИФИКАЦИЯ СИСТЕМ

Системы принято подразделять на физические и абстрактные, динамические и статические, простые и сложные, естественные и искусственные, с управлением и без управления, непрерывные и дискретные, детерминированные и стохастические, открытые и замкнутые.


Основы системного анализа

Деление систем на физические и абстрактные позволяет раз­личать реальные системы (объекты, явления, процессы) и систе­мы, являющиеся определенными отображениями (моделями) ре­альных объектов.

Для реальной системы может быть построено множество сис­тем - моделей, различаемых по цели моделирования, по требуе­мой степени детализации и по другим признакам.

Например, реальная ЛВС, с точки зрения системного адми­нистратора, - совокупность программного, математического, информационного, лингвистического, технического и других видов обеспечения, с точки зрения противника, - совокупность объектов, подлежащих разведке, подавлению (блокированию), уничтожению, с точки зрения технического обслуживания, - со­вокупность исправных и неисправных средств.

Деление систем на простые и сложные (большие) подчерки­вает, что в системном анализе рассматриваются не любые, а имен­но сложные системы большого масштаба. При этом выделяют структурную и функциональную (вычислительную) сложность.

Общепризнанной границы, разделяющей простые, большие и сложные системы, нет. Однако условно будем считать, что слож­ные системы характеризуются тремя основными признаками: свойством робастности, наличием неоднородных связей и эмер­джентностью.

Во-первых, сложные системы обладают свойством робастно­сти - способностью сохранять частичную работоспособность (эффективность) при отказе отдельных элементов или подсистем. Оно объясняется функциональной избыточностью сложной сис­темы и проявляется в изменении степени деградации выполняе­мых функций, зависящей от глубины возмущающих воздействий. Простая система может находиться не более чем в двух состоя­ниях: полной работоспособности (исправном) и полного отказа (неисправном).

Во-вторых, в составе сложных систем кроме значительного количества элементов присутствуют многочисленные и разные по типу (неоднородные) связи между элементами. Основными типа­ми считаются следующие виды связей: структурные (в том числе иерархические), функциональные, каузальные (причинно-след­ственные, отношения истинности), информационные, простран­ственно-временные. По этому признаку будем отличать сложные



26

Глава 1

системы от больших систем, представляющих совокупность од­нородных элементов, объединенных связью одного типа.

В-третьих, сложные системы обладают свойством, которое отсутствует у любой из составляющих ее частей. Это интегратив-ность (целостность), или эмерджентность. Другими словами, от­дельное рассмотрение каждого элемента не дает полного пред­ставления о сложной системе в целом. Эмерджентность может достигаться за счет обратных связей, играющих важнейшую роль в управлении сложной системой.

Считается, что структурная сложность системы должна быть пропорциональна объему информации, необходимой для ее опи­сания (снятия неопределенности). В этом случае общее количе­ство информации о системе S, в которой априорная вероятность появленияу'-ro свойства равна р(у), определяется известным со­отношением для количества информации

I(Y) = -Ip(yj)log2p(yj). (1.6)

Это энтропийный подход к дескриптивной (описательной) сложности.

Одним из способов описания такой сложности является оцен­ка числа элементов, входящих в систему (переменных, состояний, компонентов), и разнообразия взаимозависимостей между ними.

В общей теории систем утверждается, что не существует сис­тем обработки данных, которые могли бы обработать более чем 2-10547 бит в секунду на грамм своей массы. При этом компью­терная система, имеющая массу, равную массе Земли, за период, равный примерно возрасту Земли, может обработать порядка 10593 бит информации (предел Бреммермана). Задачи, требующие обработки более чем 10593 бит, называются трансвычислитель­ными. В практическом плане это означает, что, например, пол­ный анализ системы из 110 переменных, каждая из которых мо­жет принимать 7 разных значений, является трансвычислитель­ной задачей.

Для оценки сложности функционирования систем применя­ется алгоритмический подход. Он основан на определении ресур­сов (время счета или используемая память), используемых в сис­теме при решении некоторого класса задач. Например, если фун­кция времени вычислений является полиномиальной функцией от входных данных, то мы имеем дело с полиномиальным по вре-


Ф-

ч)

0

Ч

^


Основы системного анализа

мени, или «легким» алгоритмом. В случае экспоненциального по времени алгоритма говорят о его «сложности». Алгоритмическая сложность изучается в теории NP-полных задач.

Сложные системы допустимо делить на искусственные и ес­тественные (природные).

Искусственные системы, как правило, отличаются от природ­ных наличием определенных целей функционирования (назначе­нием) и наличием управления.

Рассмотрим еще один важный признак классификации сис­тем. Принято считать, что система с управлением, имеющая не­тривиальный входной сигнал x(t) и выходной сигнал y(t), может рассматриваться как преобразователь информации, перерабаты­вающий поток информации (исходные данные) x(t) в поток ин­формации (решение по управлению) y(t).

В соответствии с типом значений x(t), y(t), z(t) и t системы де­лятся на дискретные и непрерывные.

Такое деление проводится в целях выбора математического аппарата моделирования. Так, теория обыкновенных дифферен­циальных уравнений и уравнений в частных производных позво­ляет исследовать динамические системы с непрерывной перемен­ной (ДСНП). С другой стороны, современная техника создает антропогенные динамические системы с дискретными события­ми (ДСДС), не поддающиеся такому описанию. Изменения со­стояния этих систем происходят не непрерывно, а в дискретные моменты времени, по принципу «от события к событию». Мате­матические (аналитические) модели заменяются на имитацион­ные, дискретно-событийные: модели массового обслуживания, сети Петри, цепи Маркова и др.

Примеры фазовых траекторий ДСДС и ДСНП показаны на рис. 1.3, а, б.

Для ДСДС траектория является кусочно-постоянной и фор­мируется последовательностью событий и. Последовательность отрезков постоянства отражает последовательность состояний z системы, а длительность каждого отрезка отражает время пре­бывания системы в соответствующем состоянии. Под состоя­нием при этом понимается «физическое» состояние (например, число сообщений, ожидающих передачи в каждом узле обра­ботки). Состояния принимают значения из дискретного мно­жества.



28


Глава 1


Основы системного анализа


29


 



Состояние j,

z

"3

25

24 23

«5
«2

F

t4ts

h '3

a

0 1

to

Рис. 1.З. Типичные примеры фазовых траекторий ДСДС(а)иДСНП(б)


Таким образом, траектория описывается последовательно­стью из двух чисел (состояния и времени пребывания в нем). Сле­дует подчеркнуть, что термин «дискретный» отличается от ши­роко используемого прилагательного «цифровой», поскольку последнее означает лишь то, что анализ задачи ведется не в тер­минах вещественной числовой переменной, а численными мето­дами. Траектория ДСНП, состояниями которой являются точки пространства R", постоянно изменяется и, вообще говоря, разви­вается на основе непрерывных входных воздействий. Здесь под состоянием понимается «математическое» состояние в том смыс­ле, что оно включает в себя информацию к данному моменту вре­мени (кроме внешних воздействий), которая необходима для од­нозначного определения дальнейшего поведения системы. Ма­тематическое определение включает в себя и физическое определение, но не наоборот.

Для перехода от детерминированной к стохастической систе­ме достаточно в правые части соотношений (1.4) и (1.5) добавить в качестве аргументов функционалов случайную функцию p(t), принимающую значения на непрерывном или дискретном мно­жестве действительных чисел.

Следует иметь в виду, что в отличие от математики для сис­темного анализа, как и для кибернетики, характерен конструк­тивный подход к изучаемым объектам. Это требует обеспечения корректности задания системы, под которой понимается возмож­ность фактического вычисления выходного сигнала y(t) (с той или иной степенью точности) для всех / > 0 при задании начального состояния системы z(0) и входного сигнала x(t) для всех it. Поэто­му при изучении сложных систем приходится переходить к ко­нечным аппроксимациям.

Системы с нетривиальным входным сигналом x(t), источни­ком которого нельзя управлять (непосредственно наблюдать), или системы, в которых неоднозначность их реакции нельзя объяс­нить разницей в состояниях, называются открытыми.

Признаком, по которому можно определить открытую систе­му, служит наличие взаимодействия с внешней средой. Взаимо­действие порождает проблему «предсказуемости» значений вы­ходных сигналов и, как следствие, - трудности описания откры­тых систем.


 

30

Глава 1

Примером трудностей описания является понятие «странный аттрактор» - специфическое свойство некоторых сложных сис­тем. Простейший аттрактор, называемый математиками непод­вижной точкой, представляет собой такой вид равновесия, кото­рый характерен для состояния устойчивых систем после кратков­ременного возмущения (состояние покоя емкости с водой после встряхивания). Второй вид аттрактора - предельный цикл маят­ника. Все разновидности предельного цикла предсказуемы. Тре­тья разновидность называется странным аттрактором. Обнару­жено много систем, имеющих встроенные в них источники нару­шений, которые не могут быть заранее предсказаны (погода, место остановки шарика в рулетке). В экспериментах наблюдали за краном, из которого нерегулярно капали капли, хотя проме­жутки должны быть регулярными и предсказуемыми, так как вен­тиль зафиксирован и поток воды постоянен.

Математическим примером странного аттрактора является аттрактор Хенона - система уравнений, смоделированная в Lab VIEW (рис. 1.4, а, б).

Понятие открытости систем конкретизируется в каждой пред­метной области. Например, в области информатики открытыми информационными системами называются программно-аппарат­ные комплексы, которым присущи следующие свойства:

•   переносимость (мобильность) - программное обеспечение
(ПО) может быть легко перенесено на различные аппаратные
платформы и в различные операционные среды;

•   стандартность - программное обеспечение соответствует
опубликованному стандарту независимо от конкретного разра­
ботчика ПО;

•   наращиваемость возможностей - включение новых про­
граммных и технических средств, не предусмотренных в перво­
начальном варианте;

•   совместимость - возможность взаимодействовать с други­
ми комплексами на основе развитых интерфейсов для обмена
данными с прикладными задачами в других системах.

Примером открытой среды является модель OSE (Open System Environment), предложенная комитетом IEEE POSIX. На основе этой модели Национальный институт стандартов и технологии США выпустил документ «Application Portability Profile (APP). The U.S. Government's Open System Environment Profile OSE/1


 

WindowsIextHe'P


-0,2

Основы системного анализа

0,2 Состояние

рис. 1.4. Аттрактор Хенона: - программная модель; б - поведение в пространстве состояний


32


Глава 1


Основы системного анализа


33


 


Version 2.0», который определяет рекомендуемые спецификации в области информационных технологий, гарантирующие мобиль­ность системного и прикладного программного обеспечения.

В отличие от открытых замкнутые (закрытые) системы изо­лированы от среды - не оставляют свободных входных компо­нентов ни у одного из своих элементов. Все реакции замкнутой системы однозначно объясняются изменением ее состояний. Век­тор входного сигнала x(t) в замкнутых системах имеет нулевое число компонентов и не может нести никакой информации. Замкнутые системы в строгом смысле слова не должны иметь не только входа, но и выхода. Однако даже в этом случае их можно интерпретировать как генераторы информации, рассматривая из­менение их внутреннего состояния во времени. Примером физи­ческой замкнутой системы является локальная сеть для обработ­ки конфиденциальной информации.

Основным противоречием, которое приходится разрешать в замкнутых системах, является проблема возрастания энтропии. Согласно второму закону термодинамики по мере движения зам­кнутой системы к состоянию равновесия она стремится к мак­симальной энтропии (дезорганизации), соответствующей мини­мальной информации. Открытые системы могут изменить это стремление к максимальной энтропии, получая внешнюю по от­ношению к системе свободную энергию, и этим поддерживают организацию.


закон функционирования Fs, и в зависимости от целей модели­рования входной сигнал x(t) может быть разделен на три под­множества:

•   неуправляемых входных сигналов xt е X, I = 1, ... , kx, пре­
образуемых рассматриваемым элементом;

•   воздействий внешней среды «v e N, v = 1, ... , kn, представ­
ляющих шум, помехи;

•   управляющих сигналов (событий) ит е U, т = 1....... ku,

появление которых приводит к переводу элемента из одного со­стояния в другое.

Иными словами, элемент - это неделимая наименьшая функци­ональная часть исследуемой системы, включающая < х, п, и, у, f^> и представляемая как «черный ящик» (рис. 1.5). Функциональную модель элемента будем представлять как y(t) = Fs(x, п, и, t).

Входные сигналы, воздействия внешней среды и управляю­щие сигналы являются независимыми переменными. При стро­гом подходе изменение любой из независимых переменных вле­чет за собой изменение состояния элемента системы. Поэтому в дальнейшем будем обобщенно обозначать эти сигналы как x(t), a функциональную модель элемента - как y(t) = Fs(x(t)), если это не затрудняет анализ системы.

Выходной сигнал y(t), в свою очередь, представляют совокуп­ностью характеристик элемента j>. e Y,j = l,...,k


 


1.2.4.

ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ СИСТЕМНОГО АНАЛИЗА

Для оперирования основными понятиями системного анали­за будем придерживаться следующих словесно-интуитивных или формальных определений.

Элемент - некоторый объект (материальный, энергетичес­кий, информационный), обладающий рядом важных свойств и реализующий в системе определенный закон функционирования F8, внутренняя структура которого не рассматривается.

Формальное описание элемента системы совпадает с описа­нием подмодели Ч* . Однако функционалы g и / заменяются на


Рис. 1.5. Элемент системы как «черный ящик»


3-20


34


Глава 1


Основы системного анализа


35


 


Под средой понимается множество объектов S 'вне данно­го элемента (системы), которые оказывают влияние на элемент (систему) и сами находятся под воздействием элемента (системы),

Правильное разграничение исследуемого реального объекта и среды является необходимым этапом системного анализа. Часто в системном анализе выделяют понятие «суперсистема» - часть внеш­ней среды, для которой исследуемая система является элементом.

Подсистема - часть системы, выделенная по определенно­му признаку, обладающая некоторой самостоятельностью и до­пускающая разложение на элементы в рамках данного рассмот­рения.

Система может быть разделена на элементы не сразу, а после­довательным расчленением на подсистемы - совокупности эле­ментов. Такое расчленение, как правило, производится на осно­ве определения независимой функции, выполняемой данной со­вокупностью элементов совместно для достижения некой частной цели, обеспечивающей достижение общей цели системы. Подси­стема отличается от простой группы элементов, для которой не выполняется условие целостности.

Последовательное разбиение системы в глубину приводит к иерархии подсистем, нижним уровнем которых является элемент. Типичным примером такого разбиения является структура Пас­каль-программы. Так, например, тело основной программы вклю­чает модули - подсистемы первого уровня, модули включают функции и процедуры - подсистемы второго уровня, функции и процедуры включают операнды и операторы - элементы системы.

Характеристика -то, что отражает некоторое свойство элемента системы.

Характеристика v задается кортежем ^. = < name, {value} >, где пате - имя 7-й характеристики, {value} - область допустимых значений. Область допустимых значений задается перечислени­ем этих значений или функционально, с помощью правил вычис­ления (измерения) и оценки.

Характеристики делятся на количественные и качественные в зависимости от типа отношений на множестве их значений.

Если на множестве значений заданы метризованные отноше­ния, когда указывается не только факт выполнения отношения p(W, у?), н° также и степень количественного превосходства, то


характеристика является количественной. Например, размер эк­рана (см), максимальное разрешение (пиксель) являются количе­ственными характеристиками мониторов, поскольку существу­ют шкалы измерений этих характеристик в сантиметрах и пиксе­лях соответственно, допускающие упорядочение возможных значений по степени количественного превосходства: размер эк­рана монитора у! больше, чем размер экрана монитора _у А на 3 см (аддитивное метризованное отношение) или максимальное раз­решение у/1 выше, чем максимальное разрешение у?,в два раза (мультипликативное метризованное отношение).

Если пространство значений не метрическое, то характерис­тика называется качественной. Например, такая характеристика монитора, как комфортное разрешение, хотя и измеряется в пик­селях, является качественной. Поскольку на комфортность влия­ют мерцание, нерезкость, индивидуальные особенности пользо­вателя и т.д., единственным отношением на шкале комфортнос­ти является отношение эквивалентности, позволяющее различить мониторы как комфортные и некомфортные без установления количественных предпочтений.

Количественная характеристика называется параметром.

Часто в литературе понятия «параметр» и «характеристика» отождествляются на том основании, что все можно измерить. Но в общем случае полезно разделять параметры и качественные характеристики, так как не всегда возможно или целесообразно разрабатывать процедуру количественной оценки какого-либо свойства.

Характеристики элемента являются зависимыми переменны­ми и отражают свойства элемента. Под свойством понима­ют сторону объекта, обусловливающую его отличие от других объектов или сходство с ними и проявляющуюся при взаимодей­ствии с другими объектами.

Свойства задаются с использованием отношений одного из основных математических понятий, используемых при анализе и обработке информации. На языке отношений единым образом можно описать воздействия, свойства объектов и связи между ними, задаваемые различными признаками. Существует несколь­ко форм представления отношений: функциональная (в виде фун­кции, функционала, оператора), матричная, табличная, логичес­кая, графовая, представление сечениями, алгоритмическая (в виде словесного правила соответствия).

з-


36


Глава 1


Основы системного анализа


37


 


Свойства классифицируют на внешние, проявляющиеся в фор­ме выходных характеристик yt только при взаимодействии с вне­шними объектами, и внутренние, проявляющиеся в форме пере­менных состояния z, при взаимодействии с внутренними элемен­тами рассматриваемой системы и являющиеся причиной внешних свойств.

Одна из основных целей системного анализа - выявление внут­ренних свойств системы, определяющих ее поведение.

По структуре свойства делят на простые и сложные (интег­ральные). Внешние простые свойства доступны непосредствен­ному наблюдению, внутренние свойства конструируются в нашем сознании логически и не доступны наблюдению.

Следует помнить о том, что свойства проявляются только при взаимодействии с другими объектами или элементами одного объекта между собой.

По степени подробности отражения свойств выделяют гори­зонтальные (иерархические) уровни анализа системы. По харак­теру отражаемых свойств выделяют вертикальные уровни ана­лиза - аспекты. Этот механизм лежит в основе утверждения о том, что для одной реальной системы можно построить множество абстрактных систем.

При проведении системного анализа на результаты влияет фактор времени. Для своевременного окончания работы необхо­димо правильно определить уровни и аспекты проводимого ис­следования. При этом производится выделение существенных для данного исследования свойств путем абстрагирования от несу­щественных по отношению к цели анализа подробностей.

Формально свойства могут быть представлены также и в виде закона функционирования элемента.

Законом функционирования Fs, описывающим процесс функ­ционирования элемента системы во времени, называется зависи­мость y(t) = Fs( x, n, и, t).

Оператор Fs преобразует независимые переменные в зависи­мые и отражает поведение элемента (системы) во времени - про­цесс изменения состояния элемента (системы), оцениваемый по степени достижения цели его функционирования. Понятие пове­дения принято относить только к целенаправленным системам и оценивать по показателям.


Цель - ситуация или область ситуаций, которая должна быть достигнута при функционировании системы за определенный промежуток времени. Цель может задаваться требованиями к показателям результативности, ресурсоемкости, оперативности функционирования системы либо к траектории достижения за­данного результата. Как правило, цель для системы определяет­ся старшей системой, а именно той, в которой рассматриваемая система является элементом.

Показатель - характеристика, отражающая качествоу'-й системы или целевую направленность процесса (операции), реа­лизуемого у'-й системой:

YJ = WJ(n, x, и).

Показатели делятся на частные показатели качества (или эф­фективности) системы у>(, которые отражают /-е существенное свойство7-й системы, и обобщенный показатель качества (или эф­фективности) системы Y J — вектор, содержащий совокупность свойств системы в целом. Различие между показателями качества и эффективности состоит в том, что показатель эффективности характеризует процесс (алгоритм) и эффект от функционирова­ния системы, а показатели качества - пригодность системы для использования ее по назначению.

Вид отношений между элементами, который проявляется как некоторый обмен (взаимодействие), называется связью. Как правило, в исследованиях выделяются внутренние и внешние свя­зи. Внешние связи системы - это ее связи со средой. Они проявля­ются в виде характерных свойств системы. Определение внешних связей позволяет отделить систему от окружающего мира и явля­ется необходимым начальным этапом исследования.

В ряде случаев считается достаточным исследование всей си­стемы ограничить установлением ее закона функционирования. При этом систему отождествляют с оператором F5 и представля­ют в виде «черного ящика». Однако в задачах анализа обычно требуется выяснить, какими внутренними связями обусловлива­ются интересующие исследователя свойства системы. Поэтому основным содержанием системного анализа является определе­ние структурных, функциональных, каузальных, информацион­ных и пространственно-временных внутренних связей системы.


38


Глава 1


Основы системного анализа


39


 


Структурные связи обычно подразделяют на иерархические, сетевые, древовидные и задают в графовой или матричной форме.

Функциональные и пространственно-временные связи зада­ют как функции, функционалы и операторы.

Каузальные (причинно-следственные) связи описывают на языке формальной логики.

Для описания информационных связей разрабатываются ин-фологические модели.

Выделение связей разных видов наряду с выделением элемен­тов является существенным этапом системного анализа и позво­ляет судить о сложности рассматриваемой системы.

Важным для описания и исследования систем является поня­тие алгоритм функционирования As, под которым по­нимается метод получения выходных характеристик y(t) с учетом входных воздействий x(i), управляющих воздействий u(f) и воз­действий внешней среды n(t).

По сути, алгоритм функционирования раскрывает механизм проявления внутренних свойств системы, определяющих ее по­ведение в соответствии с законом функционирования. Один и тот же закон функционирования элемента системы может быть реа­лизован различными способами, т. е. с помощью множества раз­личных алгоритмов функционирования As.

Наличие выбора алгоритмов As приводит к тому, что систе­мы с одним и тем же законом функционирования обладают раз­ным качеством и эффективностью процесса функционирования.

Качество - совокупность существенных свойств объекта, обусловливающих его пригодность для использования по назна­чению. Оценка качества может производиться по одному интег­ральному свойству, выражаемому через обобщенный показатель качества системы.

Процессом называется совокупность состояний системы z(/0), z(/,), ... , z(tk), упорядоченных по изменению какого-либо параметра г, определяющего свойства системы.

Формально процесс функционирования как последователь­ная смена состояний интерпретируется как координаты точки в А>мерном фазовом пространстве. Причем каждой реализации процесса будет соответствовать некоторая фазовая траектория. Совокупность всех возможных значений состояний {z} называ­ется пространством состояний системы.


Проиллюстрировать понятие процесса можно на следующем примере. Состояние узла связи будем характеризовать количе­ством исправных связей на коммутаторе. Сделаем ряд измерений, при которых количество связей будет иметь разные значения. Будет ли полученный набор значений характеризовать некото­рый процесс? Без дополнительной информации это неизвестно. Если это упорядоченные по времени / (параметр процесса) зна­чения, то - да. Если же значения перемешаны, то соответствую­щий набор состояний не будет процессом.

В общем случае время в модели системы S может рассматри­ваться на интервале моделирования (О, 7) как непрерывное, так и дискретное, т.е. квантованное на отрезки длиной Д/ временных единиц каждый, когда T = mAt, где т - число интервалов диск­ретизации.

Эффективность процесса - степень его приспособ­ленности к достижению цели.

Принято различать эффективность процесса, реализуемого системой, и качество системы. Эффективность проявляется толь­ко при функционировании и зависит от свойств самой системы, способа ее применения и от воздействий внешней среды.

К? и т ерий эффективности - обобщенный показа­тель и правило выбора лучшей системы (лучшего решения). На­пример, Y* = max{YJ}.

Если решение выбирается по качественным характеристикам, то критерий называется решающим правилом.

Если нас интересует не только закон функционирования, но и алгоритм реализации этого закона, то элемент не может быть представлен в виде «черного ящика» и должен рассматриваться как подсистема (агрегат, домен) - часть системы, выделенная по функциональному или какому-либо другому признаку.

Описание подсистемы в целом совпадает с описанием элемен­та. Но для ее описания дополнительно вводится понятие множе­ства внутренних (собственных) характеристик подсистемы А,е Н, 1=1, ..., kh.

Оператор Fs преобразуется к виду y(t) = Fs ( х, п, и, h, t), a метод получения выходных характеристик кроме входных воз­действий x(t), управляющих воздействий u(t) и воздействий внеш­ней среды n(f) должен учитывать и собственные характеристики подсистемы h(t).


40


Глава 1


Основы системного анализа


41


 


 


Описание закона функционирования системы наряду с ана­литическим, графическим, табличным и другими способами в ряде случаев может быть получено через состояние системы. Состояние системы - это множество значений характе­ристик системы в данный момент времени.

Формально состояние системы в момент времени Г0 < t* < Т полностью определяется начальным состоянием z(/0), входными воздействиями x(t), управляющими воздействиями u(i), внутрен­ними параметрами h(t) и воздействиями внешней среды n(i), ко­торые имели место за промежуток времени t* - tQ, с помощью гло­бальных уравнений динамической системы (1.4), (1.5), преобра­зованных к виду


Вход системы А


Вход системы "В


 


0.

g, t];

y(t) = g(z(t), t).

Здесь уравнение состояния по начальному состоянию z(f0) и переменным х, и, п, h определяет вектор-функцию z(i), а уравне­ние наблюдения по полученному значению состояний z(t) опре­деляет переменные на выходе подсистемы y(t).

Таким образом, цепочка уравнений объекта «вход-состояния-выход» позволяет определить характеристики подсистемы:

ХО =/Ш'0)' х, и, п, h, 0]

и под математической моделью реальной системы можно пони­мать конечное подмножество переменных (x(t), u(t), n(i), h(t)} вместе с математическими связями между ними и характеристи­ками y(f).

Структура - совокупность образующих систему элемен­тов и связей между ними. Это понятие вводится для описания под­модели Ч*6. В структуре системы существенную роль играют свя­зи. Так, изменяя связи при сохранении элементов, можно полу­чить другую систему, обладающую новыми свойствами или реализующую другой закон функционирования. Это наглядно видно на рис. 1 .6, если в качестве системы рассматривать соеди­нение трех проводников, обладающих разными сопротивлениями.

Необходимость одновременного и взаимоувязанного рассмот­рения состояний системы и среды требует определения понятий «ситуация» и «проблема».


 

Выход системы А a

Выход системы В б

Рис. 1.6. Роль связей в структуре системы: а - параллельная связь; б - последовательная связь

Ситуация - совокупность состояний системы и среды в один и тот же момент времени.

Проблема - несоответствие между существующим и тре­буемым (целевым) состоянием системы при данном состоянии сре­ды в рассматриваемый момент времени.


Информация о работе «Отрывок из учебника по теории систем и системному анализу»
Раздел: Экономика
Количество знаков с пробелами: 143289
Количество таблиц: 39
Количество изображений: 5

Похожие работы

Скачать
59540
1
1

... Каждый элемент аппарата книги имеет свою структуру, которая часто регламентирована ГОСТами. Структура авторского текста отражена частично в оглавлении. Глава 2. Анализ учебников и программ по литературе для среднего звена 2.1. Учебники и программы по литературе для 9 класса Организация процесса обучения литературе в основной школе осуществляется с опорой на следующие программы и ...

Скачать
524898
5
9

... текста, его изложение в соответствии с выработанным планом, нумерация страниц. Оформление цитат и ссылок, библиографии, титульного листа и т.п.); — сопроводительные материалы (иллюстрации, схемы, таблицы и т. п.). В методике обучения праву выделяют разные формы контроля самостоятельной работы учеников. К ним относят и защиту рефератов. Модели защиты реферата 1. «Классическая защита». Устное ...

Скачать
129842
0
0

... граждане и лица без гражданства подлежат административной ответственности на общих основаниях с гражданами РФ[21]. Отличием КоАП РФ от прежнего Кодекса является и то, что к административной ответственности за нарушение авторского права и смежных прав могут привлекаться юридические лица, в том числе и иностранные (ст. 2.10, 7.12). Юридическое лицо признается виновным в совершении административного ...

Скачать
69192
0
12

... – МИЛУЮЩАЯ). Для того чтобы состоялась встреча человека с произведением, встреча – потрясение, необходимо ее тщательно подготовить и правильно организовать работу с художественным произведением. ЭТАПЫ РАБОТЫ С ПРОИЗВЕДЕНИЕМ ИСКУССТВА 1 ЭТАП. ПОДГОТОВИТЕЛЬНЫЙ (ПРЕЛЮДИЯ – информационное сообщение и эмоциональный настрой). Для настроя на целостное восприятие художественного образа можно ...

0 комментариев


Наверх