4. Причина явления лежит на более высоком иерархическом уровне
Причину явления необходимо искать не на уровне самого этого явления, а на следующем, более высоком, общем иерархическом уровне.
Например, для того, чтобы ответить на вопрос, почему реки меандрируют, бесполезно искать причину, описывая само меандрирование. Необходимо задать вопрос шире: почему реки бывают разные - разветвлённые, прямые и извилистые. Разобравшись в общих причинах образования всех типов русловых процессов, мы автоматически получаем ответы на вопросы о причинах образования любого типа русловых процессов.
Изучение меандрирования ничего не дало к объяснению причин образования меандрирования. Ловушкой были объяснения типа: река меандрирует, потому что она извилистая (как у Б.Ф. Снищенко [9]), или: река меандрирует, потому что это свойство потока! Как будто нет других рек - разветвлённых и прямых. А ведь к такому выводу можно действительно прийти, если всё время видеть перед собой только извилистые реки. Есть даже специалисты по меандрированию, специалисты по побочневу типу. Меня хотели сделать "специалистом по пойменной многорукавности". Капкан однобокости не позволяет разобраться в частном вопросе. Только рассмотрение всех типов русловых процессов позволило понять причину меандрирования.
Изучая любое явление, можно разобраться лишь только в свойствах этого явления. Это будет изучение, но не понимание.
Для нахождения причин явления надо, на самом деле, обратиться к изучению следующего, более высокого иерархического уровня. Тогда будет понимание причин явления, а затем и сущности самого явления.
Это даст возможность не только описания процесса, но и его прогноза и даже управления им.
5. Главные факторы
Любое явление - результат огромного (практически бесконечного!) количества факторов.
Я полусерьезно говорил о влиянии фаз Луны на развитие излучин рек и изменение типов русловых процессов (в моей неопубликованной книге "Русла равнинных рек"). И это, действительно, так. Конечно, фазы Луны на самом деле, определяют тип русловых процессов. Но, в то же время, влияние этого фактора мало.
Исследователю природы из всего разнообразия причин всегда можно (или приходится?) выбирать конечное, часто небольшое количество определяющих факторов. На это есть и объективные, и субъективные причины.
Объективно есть причины главные и второстепенные.
Например, для русловых процессов главная причина - это относительная транспортирующая способность потока, относительное затопление поймы, относительная ширина долины, относительная редукция стока, растительность и другие ограничивающие факторы.
Интересно происходила история с силой Кориолиса, как руслоформирующим фактором. Сначала, лет 100 назад, этот фактор считался одним из основных факторов, определяющих ход русловых процессов, и даже образование меандрирования приписывалось этому фактору. Затем, наоборот, влияние силы Кориолиса стало полностью отрицаться, упоминание о ней стало еретичным. На самом деле роль Кориолисовой силы сравнимо с влиянием фаз Луны - оно есть, но ничтожно. Им можно пренебречь при прогнозе руслового процесса. Такую же роль играет и температура воды, хотя в литературе высказывались разнообразные интересные противоречивые суждения о влиянии тепературы воды на русловые процессы водотоков.
Любопытно, что другие главные причины, которые играют сами по себе большую роль в формировании процесса, могут вольно или невольно упускаться учёными из рассмотрения из-за малой изменчивости этих причин.
Например, сила тяжести, скорость вращения планеты, плотность жидко-сти (воды), конечно, оказывают громадное влияние на формирование рек, образование и типов русловых процессов. Но в связи с тем, что все изучаемые людьми реки находятся на Земле, сила тяжести и скорость вращения Земли постепенно ушли от внимания исследователей. Скорость вращения Земли определяет выше упомянутую силу Кориолиса. Действительно, что было бы, если скорость вращения Земли была другой - больше в 100 раз, или меньше… Как изменились бы реки? А если бы скорость вращения Земли менялась из года в год, или вращение меняло бы направление? Возможно, что тогда бы одним из основных руслоформирующих факторов как раз стала бы скорость вращения планеты или другое природное явление, которое бы в свою очередь зависело бы от вращения Земли.
Сейчас появились интересные фотографии рек на Марсе (или следов рек), которые являются результатом таяния полярных шапок. Множество неизменных на Земле факторов там могут быть другими; там и плотность жидкости водотоков может быть другой. Скорее всего, сейчас нам не сделать прогноз развития русел на Марсе, опираясь только на законы формирования русел, выявленные на Земле.
Русловые процессы интересны тем, что в них до сих пор не выяснены законы формирования русел (или выяснены в зачаточной степени). Русловедение до сих пор находится на одном из первых этапов развития науки [5]. Здесь всё ещё Солнце вращается вокруг Земли, если только Земная твердь не находится на слонах. Например, в книге [9] утверждается, что река меандрирует тогда, когда она извилистая.
Интересно, что предлагаемая в этой книге типизация русловых процессов отражает типы русловых процессов только равнинных рек. Мало того, только пойменных рек (чаще используется термин - "широкопойменные реки"). Но в книге эта типизация русловых процессов преподносится как типизация всех рек. Так сложилось исторически, что в Европейской части СССР изучались только равнинные реки; и это указывалось в ранних оригинальных трудах основоположника этой школы Н.Е. Кондратьева. Для равнинных рек и была создана типизация. (Пускай, и не полная, и противоречивая, но революционно передовая в то время). Затем постепенно, незаметно, она была распространена на все реки, что просто не грамотно.
В огромном количестве определяющих факторов для исследования необходимо выделить основные (главные) факторы.
... ребрами) изображают конструктивные и потоковые функциональные структуры [14]. Принципы построения функциональных структур технических объектов рассматриваются в последующих главах курса "Основы проектирования им конструирования" не включенных в настоящее пособие. Для систем управления существуют характеристики, которые можно использовать в качестве критериев для оценки структур. Одна из них - ...
... , динамические и статические, простые и сложные, естественные и искусственные, с управлением и без управления, непрерывные и дискретные, детерминированные и стохастические, открытые и замкнутые. Основы системного анализа Деление систем на физические и абстрактные позволяет различать реальные системы (объекты, явления, процессы) и системы, являющиеся определенными отображениями (моделями) ре ...
... вующих систем автоматизированного проектирования подтвердил отсутствие разработок по автоматизации схемотехнического и функци- онального проектирования объектов класса ВКА. . - 41 - 2. СИСТЕМНЫЙ АНАЛИЗ ВАКУУМНОЙ КОММУТАЦИОННОЙ АППАРАТУРЫ 2.1. Системная модель ВКА при функциональном и схемотехни- ческом проектировании. Анализ существующих конструкций ВКА ...
... быть системным. При таком анализе риски исследуют в их взаимной связи с учетом вероятности и особенностей проявления конкретного риска. Анализ и оценка являются начальными этапами и информационной базой управления риском. Методика оценки риска, естественно, зависит от вида и физической сущности риска. Поэтому краеугольным камнем анализа, оценки, управления риском считают концепцию разделения ...
0 комментариев