МОСКОВСКИЙ ИНСТИТУТ ЭЛЕКТРОННОГО МАШИНОСТРОЕНИЯ
Для служебного пользования
Экз. N _______
На правах рукописи
УДК 621.52/.646:658.5
1БАТРАКОВ ВАСИЛИЙ БОРИСОВИЧ
2СХЕМОТЕХНИЧЕСКОЕ И ФУНКЦИОНАЛЬНОЕ ПРОЕКТИРОВАНИЕ
2ВАКУУМНОЙ КОММУТАЦИОННОЙ АППАРАТУРЫ
Специальность 05.27.07. - Оборудование производства
электронной техники
Специальность 05.13.12. - Системы автоматизации
проектирования
Д и с с е р т а ц и я
на соискание ученой степени кандидата технических наук
Научный руководитель
кандидат технических наук, доцент
Львов Борис Глебович
Москва - 1992
.
- 2 -
СОДЕРЖАНИЕ
Введение .................................................... 4
1. Современное состояние работ по созданию вакуумной
коммутационной аппаратуры ................................ 10
1.1. Анализ связей ВКА с оборудованием электронной
техники. Основные требования, предъявляемые к ВКА ... 10
1.2. Функционально-структурный анализ ВКА ................ 15
1.3. Структурно-конструктивная классификация ВКА ......... 28
1.4. Аналитический обзор методов поискового
конструирования ..................................... 30
Выводы ................................................... 39
2. Системный анализ вакуумной коммутационной аппаратуры ..... 41
2.1. Системная модель ВКА при функциональном и схемо-
техническом проектировании .......................... 41
2.2. Функции и структура ВКА ............................. 42
2.3. Свойства ВКА и ее структурных составляющих .......... 55
2.4. Цели проектирования ВКА ............................. 62
2.5. Уравнение функционирования и критерии оптималь-
ности ВКА ........................................... 70
Выводы ................................................... 73
3. Разработка методологии схемотехнического и функционального
проектирования ВКА ....................................... 75
3.1. Методические основы функционального и схемотех-
нического проектирования ВКА ........................ 75
3.2. Методика параметрического анализа конструкций ВКА.... 76
3.3. Методика синтеза структур ВКА ....................... 80
3.4. Синтез и кинематический анализ механизмов ВКА ....... 94
3.5. Моделирование процесса функционирования ВКА .........109
Выводы ...................................................115
- 3 -
4. Создание новых конструкций ВКА на базе автоматизации
схемотехнического и функционального проектирования .......118
4.1. Программые средства анализа существующих конст-
рукций ВКА ..........................................118
4.2. Программные средства синтеза и анализа структур ВКА..121
4.3. Структурно-функциональная модель САПР ВКА на этапе
схемотехнического и функционального проектирования...124
4.4. Конструкции ВКА, разработанные на основе синтезиро-
ванных структур .....................................128
Выводы ...................................................135
Заключение ..................................................137
Литература ..................................................140
Приложения ..................................................157
.
- 4 -
ВВЕДЕНИЕ
Необходимость всесторонней интенсификации экономики нераз-
рывно связана с ускорением научно-технического прогресса, важ-
нейшими направлениями которого являются создание и освоение
принципиально новой техники и технологии, автоматизация и меха-
низация производства. Выполнение этих задач требует, в част-
ности, развития вакуумной техники, оказывающей определяющее вли-
яние на создание и производство изделий электроники и все более
широко используемой в других отраслях промышленности.
Разработка новых вакуумных технологий предъявляет к вакуум-
ному оборудованию повышенные требования, разнообразный и меняю-
щийся диапазон значений которых обуславливает необходимость мо-
дернизации и разработки новых конструкций его элементной базы, в
частности, вакуумной коммутационной аппаратуры (ВКА): клапанов,
затворов, натекателей, служащих для периодического сообщения и
герметичного перекрытия вакуумных коммуникаций и управления ва-
куумным режимом. Конструкцией и правильной эксплуатацией ВКА,
являющейся неотъемлемой частью вакуумных систем (ВС), в значи-
тельной степени определяется надежность работы вакуумного техно-
логического оборудования. (ВТО). Вместе с тем традиционное про-
ектирование, основанное на интуитивно-эмпирическом подходе,
исходя из уровня знаний конструктора, не удовлетворяет в полной
мере ужесточившимся требованиям к созданию ВКА (например, необ-
ходимости минимального воздействия потоков газовыделения и заг-
рязнений на технологическую среду оборудования производства из-
делий электронной техники, работе при температурах 600 - 800 К,
повышению показателей надежности в десятки раз и т.д.), что осо-
бенно заметно на примере цельнометаллической ВКА, показатели ка-
чества которой, начиная с начала 70-х годов по существу не улуч-
- 5 -
шаются. В связи с этим существующие конструкции громоздки, имеют
небольшой ресурс и наработку на отказ. Ситуация осложняется
отсутвием единого научно обоснованного подхода к проектированию
ВКА, что приводит к неоправданному ее многообразию, низкому ка-
честву конструкций и, как следствие, к отказам и простоям доро-
гостоящего оборудования при эксплуатации. Кроме того, проявля-
ется тенденция к значительному уменьшению сроков проектирования
ВКА, которая наряду с указанными факторами вызывает необходи-
мость автоматизации процесса проектирования.
Одним из выходов из сложившейся ситуации является разработ-
ка и применение новых развивающихся методик проектирования, поз-
воляющих генерировать множество различных технических решений и
проводить целенаправленный их поиск и выбор, исходя из техни-
ческого задания (ТЗ), имеющего жесткие и иногда полярные требо-
вания.
Изложенное определило цель настоящей работы, которой явля-
ется создание научно обоснованной методологии схемотехнического
и функционального проектирования ВКА, направленной на решение
проблем проектирования ВКА, с конкретной реализацией в виде но-
вых конструкций ВКА и программно-информационных средств, пред-
назначенных для анализа, синтеза и моделирования работы ВКА.
Принципиально функциональное и схемотехническое проектиро-
вание ВКА, заключающееся в синтезе и анализе ВКА на этапе техни-
ческого предложения и содержащее оценку свойств ВКА на основе
исследования процессов ее функционирования, генерацию и выбор
принципиальных технических решений, определяющих структуру ВКА с
учетом специфики ее функционирования в составе конкретной ВС,
можно представить в виде последовательности: цель проектирования
- функция - устройство (элементная структура), которая обуслав-
ливает необходимость формального описания структур, функций,
- 6 -
свойств, объектов для определения проектных целей в виде измене-
ния структур ВКА и определения связей свойств ВКА для построения
этих структур.
Более детально модель процесса проектирования ВКА на на-
чальных стадиях можно представить в виде алгоритма, укрупненная
блок-схема которого приведена на рис. 1.
Согласно представленной блок-схемы, ТЗ на разработку ВКА
определяется требованиями к ВС, являющейся для ВКА объектом бо-
лее высокого уровня, а начальным этапом создания ВКА является
поиск аналогов. Это объясняется нецелесообразностью разработки
новой конструкции ВКА при наличии среди существующих вариантов
ВКА конструкции, полностью удовлетворяющей предъявленным требо-
ваниям.
В случае отсутствия аналогов необходимо проанализировать ТЗ
для выявления заведомо завышенных требований с целью их смягче-
ния. Если данная процедура не приводит к нахождению аналога, то
переходят к поиску прототипа - конструкции ВКА, наиболее полно
соответствующей требованиям ТЗ. Сравнение параметров выбранной
конструкции ВКА с требуемыми (ТЗ) позволяет сформировать потре-
бительские цели проектирования ВКА в виде необходимости измене-
ния соответствующих значений параметров ВКА или ее структурных
составляющих.
Цели и критерии позволяют конструктору осуществлять направ-
ленный поиск и синтез технических решений ВКА. Исходя из целей,
определяют необходимые функции и функциональные модули, их реа-
лизующие. Вводя соответствующие отношения среди найденных функ-
циональных модулей, получают возможные структуры ВКА, из которых
с помощью критериев выбирают структуру, наиболее отвечающую
предъявленным требованиям ТЗ (происходит достижение проектной
цели).
- 8 -
Отсутствие среди известных удовлетворительной функциональ-
ной структуры или появление новых функций для достижения потре-
бительской цели проектирования ВКА приводит к необходимости син-
теза физического принципа действия ВКА, являющегося этапом ее
функционального проектирования, появлению новых функциональных
модулей и повторению этапов схемотехнического проектирования ВКА
для синтеза ее оптимальной элементной структуры.
Анализ приведенного алгоритма проектирования показал, что,
помимо отмеченного отсутствия системного описания ВКА, удобного
для постановки задач схемотехнического и функционального проек-
тирования, достижение поставленной цели осложнено также
отсутствием исследований процесса функционирования ВКА с позиций
схемотехнического проектирования; формального описания структур
ВКА и процесса их синтеза; формализованных научно обоснованных
методов принятия решений при конструировании ВКА, что позволило
сформулировать следующие основные задачи, подлежащие решению:
- проведение системного анализа ВКА;
- разработка системной модели процесса проектирования ВКА;
- разработка методики и математических моделей процесса проекти-
рования ВКА на уровне формирования ее структурных схем;
- построение и исследование модели функционирования ВКА;
- разработка формализованных методов выбора и критериев опти-
мальности при структурном синтезе ВКА;
- разработка комплекса программных средств автоматизации началь-
ных этапов проектирования ВКА;
- разработка новых конструкций ВКА на основе использования соз-
данного методического и информационно-программного обеспечений.
На защиту выносятся:
1. Системные модели ВКА и процесса ее функционального и
схемотехнического проектирования.
- 9 -
2. Методика и математические модели функционально-схемотех-
нического проектирования ВКА.
3. Математические модели ВКА на этапах функционального и
схемотехнического проектирования.
4. Методика и математическая модель оценки конструкций ВКА
и ее структурных составляющих.
5. Результаты исследования математической модели функциони-
рования ВКА и критерии оптимальности конструкций ВКА.
6. Новый класс ВКА переменной структуры и конструкции ВКА.
.
- 10 -
I. СОВРЕМЕННОЕ СОСТОЯНИЕ РАБОТ ПО СОЗДАНИЮ ВАКУУМНОЙ
КОММУТАЦИОННОЙ АППАРАТУРЫ
I.I. Анализ связей ВКА с оборудованием электронной
техники. Основные требования, предъявляемые к
ВКА.
Вакуум как рабочая среда технологических процессов и научных
исследований находит возрастающее применение в различных отраслях
промышленности. При этом основным потребителем элементов, средств
и систем вакуумной техники является электронная техника, предъяв-
ляющая наиболее жесткие, зачастую противоречивые и трудно реализу-
емые требования к создаваемым ВС.
Используемое в электронной технике вакуумное технологическое
и научное оборудование, интервалы рабочих давлений основных типов
которого приведены на рис. I.I., по величине рабочего давления
можно условно разделить на три группы: 1) установки с рабочим дав-
лением до 5 10 Па; 2) установки с рабочим давлением до 1
... модели функционирования ВКА и критерии оптимальности конструкций ВКА. 6. Новый класс ВКА переменной структуры и конструкции ВКА. I. СОВРЕМЕННОЕ СОСТОЯНИЕ РАБОТ ПО СОЗДАНИЮ ВАКУУМНОЙ КОММУТАЦИОННОЙ АППАРАТУРЫ I.I. Анализ связей ВКА с оборудованием электронной техники. Основные требования, предъявляемые к ВКА. Вакуум как рабочая среда технологических процессов и научных исследований находит ...
... сборки и маршрутные карты приведены в приложении. 9. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ 9.1 Краткая экономическая характеристика проектируемого устройства Разрабатываемое в дипломном проекте устройство представляет собой блок обмена сообщениями аналоговой ЭАТС. В развитых зарубежных странах широкое применение нашли аналоговые ЭАТС типа IBM 1750 (США), DST1 (Италия), ЕК-50 (Япония), АТС 501 ...
... УЛПМ-901. 11 Визуальный контроль качества сборки при увеличении 2,5. ГГ6366У/012. Маршрутная карта на техпроцесс изготовления печатной платы приведена в приложении. 8 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ДИПЛОМНОГО ПРОЕКТА 8.1 Характеристика изделия «Модуль управления временными параметрами». Обоснование объема производства и расчетного периода Модуль управления временными параметрами – ...
... : ¾ температура, °С +25±10; ¾ относительная влажность воздуха, % 45...80; ¾ атмосферное давление, мм рт. ст. 630...800. Так как блок интерфейсных адаптеров предназначен для работы в нормальных условиях, в качестве номинальных значений климатических факторов указанные выше принимают нормальные значения ...
0 комментариев