Великая теорема Ферма

3029
знаков
3
таблицы
0
изображений

Валерий Петров

Более 350 лет математики всего мира безуспешно ищут ответ на вопрос: «Верна ли великая теорема Ферма?». Не находит его и дьявол, изучив за 10 часов все без исключения разделы математики и потратив остаток времени на собственные изыскания, он, за 10 минут до истечения срока, появляется с пачкой исписанных листков, швыряет их на пол и топчет ногами. И, признав свое поражение, исчезает... Однако спустя несколько минут появляется вновь и вместе с человеком начинает искать ответ на поставленный вопрос».

В действительности, однако, все было несколько иначе. Когда дьявол узнал об условии заключения договора с ученым-математиком о продажи его души, он рассмеялся и сказал: «Нет ничего проще. У меня есть доказательство этой теоремы, написанное самим Ферма». С этими словами дьявол достал из кармана аккуратно сложенный лист бумаги и протянул его ученому. Флэгг уселся поудобнее в кресло у камина и стал читать.

«Пусть имеется три целых числа, удовлетворяющих уравнению:

z3 = x3 + y3

(1)

Очевидно, эти числа попарно не должны иметь общих множителей. Также очевидно, что число z меньше суммы двух других чисел, т.е.

z < x + y (2)

Пусть имеется три отрезка длиной z, x, y, удовлетворяющих условию (2). Тогда в силу известной теоремы на этих отрезках можно построить треугольник как на сторонах. Предположим, что треугольник прямоугольный. Тогда для сторон этого треугольника справедливы два соотношения:

z3 = x3 + y3 и z2 = x2 + y2,

откуда следует:

(x3 + y3)2 = (x2 + y2)3;

x6 + 2x3y3 + y6 = x6 + 3x4y2 + 3x2y4 + y6;

2x3y3 = 3x4y2 + 3x2y4;

2x3y3 = 3x2y2(x2 + y2);

2xy = 3(x2 + y2).

Пусть x = y + b. Тогда:

2y(y + b) = 3(x2 + y2);

2y2 + 2yb = 3x2 + 3y2;

2y2 + 2yb – 3y2 = 3x2;

2yb – y2 = 3x2;

y(2b – y) = 3x2;

Пусть 2b – y = c, тогда y = 3x2/c.

Пусть 3/c = d, тогда

y = dx2

(3)

Таким образом, число x является одним из сомножителей числа y, что недопустимо и, следовательно, уравнение (1) не имеет целочисленных решений удовлетворяющих условию (2).

Применяя бином Ньютона для возведения в степень суммы чисел x2+y2 в степень, можно аналогичным образом доказать теорему для любых чисел n>3.

Известно, однако, что существует теорема, согласно которой треугольник, между сторонами которого имеется соотношение zn=xn+yn, при n>3 является остроугольным. Тогда для сторон этого треугольника справедливы два соотношения:

zn = xn + yn и z2 = x2 + y2 + 2xy · cosα,

где α – угол между сторонами x и y.

Однако и в этом случае доказательство сводится к тому, что y оказывается равным dx2, так же, как это было показано для прямоугольного треугольника (3).

Флэгг задумался на мгновенье и неожиданно швырнул бумагу прямо в огонь. «Зачем Вы это сделали?» – воскликнул дьявол. «Я нахожу, что слишком дешево продал свою душу. Так пусть же никто больше не воспользуется этим доказательством!» – ответил Флэгг.

«В самом деле», подумал дьявол, «пусть математики еще поломают головы над доказательством этой теоремы».

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.n-t.org/


Информация о работе «Великая теорема Ферма»
Раздел: Математика
Количество знаков с пробелами: 3029
Количество таблиц: 3
Количество изображений: 0

Похожие работы

Скачать
53049
2
0

... , что возможно, наша цивилизация подойдет к концу прежде, чем удастся доказать Великую теорему Ферма. Доказательство Великой теоремы Ферма стало самым ценным призом в теории чисел, и поэтому не удивительно, что поиски его привели к некоторым наиболее захватывающим эпизодам в истории математики. В эти поиски оказались вовлеченными величайшие умы на нашей планеты, за доказательство назначались ...

Скачать
11699
0
0

... іють властивостями, аналогічними властивостям магічних квадратів. Хоча Ферма вніс великий внесок до розвитку теорії чисел алгебри, докази його доводів майже ні в одному випадку знайдені не були (доведення Великої теореми Ферма для n=4 – виключення, оскільки в рукописах воно було). Деякі виводи, зроблені Ферма, були і зовсім помилковими, але теореми, повні докази яких, як затверджував Ферма, у ...

Скачать
20930
0
0

... n = q ³ 3 и четном значении z также не имеет целочисленных решений. Поэтому далее достаточно доказать, что целочисленных решений не имеет также и уравнение (14). Доказательство великой теоремы ферма. Уравнения (1) и (14) полностью эквивалентны, т.е. либо не существует целочисленных решений у обоих уравнений, либо целочисленные решения одновременно имеют уравнения (1) и (14). Покажем, что ...

Скачать
82482
0
0

... алгебраических чисел. – М. – Наука. – 1982. - С. 13).   Вывод: Великая теорема Ферма для степени простом доказана.   ********   Утверждение 2, частным случаем которого является Великая теорема Ферма, для показателя q = 4 Часть 1 Уравнение  ( - четное, q = 4 = 2m, где m = 2) не имеет решений в отличных от нуля попарно взаимно простых целых числах ,  и  таких, чтобы  - было четным,  и  - ...

0 комментариев


Наверх