4.2. Адаптивные модели формирования планов производства

Базовая адаптивная модель предполагает, что изменения выпуска определяются точностью реализации предыдущих прогнозов выпуска. Такая формулировка модели представляется нам более интересной для анализа переходных экономик по сравнению с упрощенной постановкой, не предполагающей взаимодействия независимых переменных. Поскольку мы предполагаем исследовать не только базовую адаптивную модель формирования планов выпуска, но и модели с включением различных видов спроса. В этом случае будут использоваться не только точности прогнозов каждого из трех наблюдаемых видов спроса, но и точности планов производства относительно последующих фактических изменений этих видов спроса. Тогда необходимо построить матрицу сопряженности прогнозов изменения выпуска в опросе t-1 Q*t-1 и фактических изменений, например, платежеспособного спроса в следующем опросе t Dt:

Q*t-1
+ = -
+ 2 1 1
Ф(Dt, Q*t-1): D t = 3 2 1
- 3 3 2

Новая переменная Ф(Dt, Q*t-1) является трихотомической и может принимать следующие значения: (1) - фактические изменения спроса оказались лучше планов изменения выпуска; (2) - фактические изменения спроса совпали с планами выпуска; (3) - фактические изменения спроса оказались хуже планов изменения выпуска. При использовании в адаптивной модели такой "перекрестной" точности прогнозов производства относительно последующих фактических изменений спроса можно исследовать принципиально, на наш взгляд, важные зависимости спроса и выпуска и их влияние на процессы принятия решений. Остановимся более подробно на интерпретации новой переменной и ее возможном влиянии на формирование очередных прогнозов предприятий.

Адаптивная модель предполагает, что точность предыдущих прогнозов положительно связана с формированием прогнозов на следующем шаге. Тогда в ситуации, когда фактические изменения спроса оказались лучше предыдущих планов изменения выпуска, предприятия должны, поверив этим фактическим изменениям и в стремлении "добрать" неудовлетворенный или упущенный спрос, планировать рост выпуска и таким образом адаптироваться к фактическим изменениям спроса на свою продукцию. Если же фактические изменения спроса оказались хуже планировавшихся изменений производства, то адаптация предприятий должна состоять в снижении выпуска. В том же случае, когда планы производства совпали с изменениями спроса, то предприятия не должны изменять объемы производства, т.е. планировать сохранение прежних объемов выпуска. Подобная модель, на наш взгляд, более интересна для анализа переходных экономик, характеризующихся резким свертыванием спроса и попытками предприятий сохранить прежние объемы производства. Такое сочетание приводит к избыточному выпуску, росту запасов готовой продукции и поиску альтернативных (неденежных) каналов сбыта. Использование традиционной адаптивной модели формирования планов производства (сформулированной западными исследователями для западных экономик) предполагает, скорее всего, что и фактические изменения и планы производства более или менее адекватны ситуации на рынке, и производителю надо лишь учесть эту динамику при формировании своих очередных планов. Такая постановка представляется далекой от действительности российской экономики 90-х годов ХХ века.

Наличие в составе показателей конъюнктурных опросов динамики сразу трех видов спроса еще больше, на наш взгляд, расширяет аналитические возможности адаптивной модели формирования планов производства. В этом случае можно рассмотреть влияние на планы предприятий сразу трех видов спроса в течение уникального периода, когда в России происходил переход от бартерной экономики к денежной.

Анализ адаптивных моделей формирования производственных планов начнем с базовой модели, в которой планы определяются точностью реализации предыдущих планов изменения производства:

Q*t = f( Ф(Qt, Q*t-1) ),

где Q*t - ожидаемые изменения производства, зарегистрированные в момент (опрос) t; Qt - фактические изменения производства, зарегистрированные в момент (опрос) t; Q*t-1 - ожидаемые изменения производства, зарегистрированные в момент (опрос) t-1; Ф(Qt, Q*t-1) - точность реализации ожидаемых изменений производства Q*t-1 относительно фактических изменений производства Qt.

Качество подгонки этой модели оказалось в подавляюще числе случаев хорошим: наблюдаемый уровень значимости очень редко опускался ниже пятипроцентного порога. Такие "провалы" были зарегистрированы в весной-летом 1995 и 1996 гг., а также в конце 1998 - начале 1999 г. А вот качество подгонки адаптивной модели в "мягкой" формулировке (Q*t = f( Qt, Q*t-1)) оказалось не таким стабильным. В период 1993-1994 гг. оно было высоким и очень устойчивым; в 1995 г. - высоким, но неустойчивым; в дальнейшем мягкая адаптивная модель полностью перестала быть применима к формированию производственных планов российских промышленных предприятий.

Коэффициенты "жесткой" модели (с использованием показателя точности прогнозов выпуска относительно фактических изменений выпуска) имели отрицательные знаки в течение всего периода наблюдения (1993-2001 гг.). Это означает, что при лучших фактических изменениях по сравнению с предыдущими прогнозами российские промышленные предприятия были не склонны верить этим фактам и на следующем шаге корректировать свои прогнозы в лучшую сторону. Они предпочитали сохранять прежний пессимизм своих прогнозов. И, наоборот, при наличии худших по сравнению с прогнозом фактических изменений оптимизм очередных прогнозов не снижался. Такую интерпретацию подтверждают значения коэффициентов в "мягкой" адаптивной модели. Эти коэффициенты, наоборот, были все положительны. А значения коэффициентов для предыдущих прогнозов всегда и существенно превосходили значения коэффициентов для предыдущих фактических изменений выпуска - особенно с 1996 г. (см. рис.4).

Теперь рассмотрим адаптивные модели формирования производственных планов, где в качестве независимых переменных используются точности прогнозов основных видов спроса относительности последующих реализаций этих же видов спроса. Адаптивная модель с участием только точности платежеспособного спроса имела хорошее качество подгонки в течение всего периода наблюдения (1995-2001 гг.). Единственным продолжительным исключением стало начало 2000 г. Коэффициенты модели были отрицательны и очень редко статистически значимы. Т.о. гипотеза об адаптивном (только по платежеспособному спросу) формировании производственных планов в российской промышленности не подтверждается. Аналогичные результаты были получены и для других видов спроса: модели имели приемлемое качество подгонки, но отрицательные коэффициенты, которые очень редко были статистически значимы.

На следующем шаге исследования адаптивных моделей рассмотрим модель, где в качестве независимых переменных фигурируют точности всех трех видов спроса одновременно:

Q*t = f( Ф(Dt, D*t-1), Ф(Bt, B*t-1), Ф(Nt, N*t-1) ),

где Q*t - ожидаемые изменения производства, зарегистрированные в момент (опрос) t; Dt, Bt, Nt - фактические изменения платежеспособного, бартерного и прочих неденежных видов спроса соответственно, зарегистрированные в момент (опрос) t; D*t-1, B*t-1, N*t-1, -ожидаемые изменения платежеспособного, бартерного и прочих неденежных видов спроса соответственно, зарегистрированные в момент (опрос) t-1.

Такая модель имела высокое качество подгонки: наблюдаемый уровень значимости гарантированно превосходил 5% порог (см. табл.7). Коэффициенты модели были чаще положительны, чем отрицательны, особенно - для точностей бартерного и прочих неденежных видов спроса. Но статистическая значимость коэффициентов была крайне низкой: 2-3 раза для каждого из видов спроса за два года мониторинга. И в этом случае не удалось получить надежных статистических аргументов в пользу адаптивного (по всем видам спроса) формирования планов выпуска в российской промышленности.

Таблица 7. Характеристики влияния точностей прогнозов платежеспособного, бартерного и прочих неденежных видов спроса на производственные планы предприятий

Дата Характеристики качества подгонки модели Коэффициенты модели для точностей прогнозов
платежеспособного спроса бартерного спроса прочих неденежных видов спроса
G2 Df Sig

Особенности формирования производственных и ценовых планов (прогнозов) предприятий российской промышленности в 1993-2001 гг.

SE

Особенности формирования производственных и ценовых планов (прогнозов) предприятий российской промышленности в 1993-2001 гг.

SE

Особенности формирования производственных и ценовых планов (прогнозов) предприятий российской промышленности в 1993-2001 гг.

SE
2/00 43.827 49 0.6823 0.2043 0.1281 0.1636 0.1446 0.1229 0.1510
3/00 45.199 49 0.6280 0.3184 0.1123 0.1261 0.1374 -0.0296 0.1438
4/00 46.058 49 0.5931 0.0273 0.0970 0.0381 0.1234 0.1562 0.1306
5/00 59.101 49 0.1529 0.0678 0.1159 0.1137 0.1247 -0.0121 0.1467
6/00 36.586 49 0.9049 0.1456 0.1050 0.1943 0.1277 0.0430 0.1355
7/00 43.827 49 0.6823 0.0778 0.1138 0.1595 0.1462 0.1069 0.1667
8/00 30.335 49 0.9833 0.2227 0.1373 0.3052 0.1780 0.0619 0.1786
9/00 40.523 49 0.8004 -0.0113 0.1172 0.3944 0.1466 0.0466 0.1472
10/00 38.565 49 0.8580 -0.0030 0.1093 0.2140 0.1358 0.2721 0.1581
11/00 46.886 49 0.5593 0.1374 0.1105 0.0625 0.1402 0.1620 0.1469
12/00 38.135 49 0.8692 0.0665 0.1182 -0.0574 0.1775 0.3213 0.1859
1/01 32.61 49 0.9655 0.0723 0.1214 0.1508 0.1572 0.1518 0.1703
2/01 35.897 49 0.9185 -0.0770 0.1105 0.0186 0.1429 0.4275 0.1708
3/01 31.88 49 0.9723 0.0540 0.1038 0.3012 0.1486 -0.0468 0.1539
4/01 74.599 49 0.0107 0.1189 0.0987 0.0233 0.1334 0.2373 0.1328
5/01 49.981 49 0.4342 0.0770 0.1117 -0.1649 0.1554 0.4134 0.1558
6/01 46.475 49 0.5761 0.0020 0.1073 0.2565 0.1471 0.1449 0.1468
7/01 31.894 49 0.9722 0.0230 0.1163 0.0456 0.1453 0.4173 0.1613
8/01 54.263 49 0.2808 0.0621 0.1039 0.0644 0.1590 0.2582 0.1558
9/01 39.996 49 0.8169 -0.0031 0.1164 0.2303 0.1426 0.2446 0.1564
10/01 52.137 49 0.3529 0.4050 0.1362 0.2941 0.1614 -0.1061 0.1655
11/01 39.436 49 0.8337 -0.0691 0.1122 0.3663 0.1447 0.2585 0.1521
12/01 34.742 49 0.9383 -0.0167 0.1389 0.1898 0.2184 0.1709 0.2397

Примечание. В таблице приведены: G2 - величина отношения правдоподобия; df - число степеней свободы; Sig - наблюдаемый уровень значимости; коэффициенты Особенности формирования производственных и ценовых планов (прогнозов) предприятий российской промышленности в 1993-2001 гг., оценивающие линейную связь (ассоциацию) рангов каждого из факторов с производственными планами, и стандартные ошибки (SE).

Введем в предыдущую модель точность прогнозирования (точнее - планирования) еще одного показателя - объемов производства. Тогда у нас получится модель, которая предполагает, что очередные прогнозы выпуска формируются в зависимости от точности четырех показателей (трех видов спроса и выпуска):

Q*t = f( Ф(Qt, Q*t-1), Ф(Dt, D*t-1), Ф(Bt, B*t-1), Ф(Nt, N*t-1) ).

Рассматриваемая модель также имела высокое качество подгонки: наблюдаемый уровень значимости всегда был максимальным. Коэффициенты модели были всегда положительны для трех видов спроса и почти всегда для точности предыдущих планов производства. Однако статистически значимым оказалось влияние точности прогнозов бартерного и прочих неденежных видов спроса, точности других показателей не учитывались адаптивным образом при планировании выпуска на очередной период (см. табл.8).

Таблица 8. Характеристики влияния точностей прогнозов выпуска, платежеспособного, бартерного и прочих неденежных видов спроса на производственные планы предприятий

Дата Характеристики качества подгонки модели Коэффициенты модели
Ф(Qt, Q*t-1) Ф(Dt, D*t-1) Ф(Bt, B*t-1) Ф(Nt, N*t-1)
G2 Df Sig

Особенности формирования производственных и ценовых планов (прогнозов) предприятий российской промышленности в 1993-2001 гг.

SE

Особенности формирования производственных и ценовых планов (прогнозов) предприятий российской промышленности в 1993-2001 гг.

SE

Особенности формирования производственных и ценовых планов (прогнозов) предприятий российской промышленности в 1993-2001 гг.

SE

Особенности формирования производственных и ценовых планов (прогнозов) предприятий российской промышленности в 1993-2001 гг.

SE
2/00 194.58 228 1.0000 0.1023 0.1120 0.2312 0.1304 0.2474 0.1347 0.4101 0.1385
3/00 208.37 228 1.0000 0.1397 0.1087 0.2126 0.1157 0.3833 0.1256 0.2050 0.1177
4/00 284.33 228 1.0000 0.0165 0.0932 0.0365 0.1000 0.2339 0.1072 0.3402 0.1093
5/00 274.8 228 1.0000 0.1675 0.0992 0.1375 0.1066 0.2848 0.1154 0.2261 0.1256
6/00 240.68 228 1.0000 0.1373 0.0991 0.1924 0.1033 0.3495 0.1191 0.3020 0.1227
7/00 280.96 228 1.0000 -0.0569 0.1004 0.2088 0.1188 0.2427 0.1218 0.5010 0.1341
8/00 216.76 228 1.0000 -0.0840 0.1146 0.2177 0.1271 0.4217 0.1427 0.3873 0.1465
9/00 208.57 228 1.0000 0.0330 0.1069 0.1019 0.1076 0.4709 0.1239 0.3721 0.1275
10/00 226.26 228 1.0000 0.0886 0.1013 0.0450 0.1062 0.2861 0.1234 0.5185 0.1424
11/00 222.24 228 1.0000 0.0058 0.0901 0.2653 0.1045 0.2216 0.1194 0.3669 0.1303
12/00 251.93 228 1.0000 0.0647 0.1088 0.2453 0.1222 0.2772 0.1324 0.4402 0.1455
1/01 257.64 228 1.0000 0.0515 0.1033 0.2062 0.1183 0.2452 0.1286 0.4178 0.1356
2/01 270.78 228 1.0000 -0.0352 0.1033 0.1398 0.1123 0.3256 0.1263 0.4148 0.1324
3/01 229.63 228 1.0000 0.0101 0.0961 0.2188 0.1129 0.4292 0.1314 0.3383 0.1244
4/01 242.77 228 1.0000 0.0791 0.0985 0.1806 0.1018 0.2972 0.1147 0.3577 0.1092
5/01 312.98 228 1.0000 0.0327 0.1043 0.1333 0.1136 0.1928 0.1190 0.5054 0.1211
6/01 252.88 228 1.0000 -0.2133 0.0993 0.1964 0.1091 0.5487 0.1297 0.3509 0.1212
7/01 200.69 228 1.0000 0.0310 0.1038 0.2432 0.1179 0.2845 0.1186 0.4541 0.1490
8/01 249.12 228 1.0000 0.0599 0.1025 0.1069 0.1112 0.2470 0.1286 0.4197 0.1381
9/01 231.01 228 1.0000 -0.0454 0.1001 0.1151 0.1161 0.5540 0.1428 0.3404 0.1397
10/01 237.68 228 1.0000 0.1756 0.1104 0.4493 0.1342 0.2478 0.1312 0.1980 0.1388
11/01 212.09 228 1.0000 -0.0414 0.0977 0.1683 0.1079 0.6023 0.1347 0.3922 0.1318
12/01 179.59 228 1.0000 0.2244 0.1289 0.1660 0.1374 0.4399 0.1749 0.2257 0.1652

Примечание. В таблице приведены: G2 - величина отношения правдоподобия; df - число степеней свободы; Sig - наблюдаемый уровень значимости; коэффициенты Особенности формирования производственных и ценовых планов (прогнозов) предприятий российской промышленности в 1993-2001 гг., оценивающие линейную связь (ассоциацию) рангов каждого из факторов с производственными планами, и стандартные ошибки (SE).

Такая ситуация выглядит не очень логичной, поскольку оба статистически значимых показателя становятся после дефолта все менее значимыми для российских промышленных предприятий. Суммарная доля этих видов спроса упала в 2001 г. до 25-20%. Более того, предприятия стараются удерживаться от увеличения объемов таких сделок даже во времена, когда денежный спрос не растет или снижается. Но, возможно, в этом сочетании и следует искать объяснение. Если нежелаемые явления имеют фактическую тенденцию к сокращению, то почему бы не следовать (не учитывать) этой тенденции и в своих действиях (планах выпуска). Возможно, поэтому в такой адаптивной модели и было получено статистически значимое влияние на планы выпуска точностей предыдущих прогнозов "нежеланных" показателей. С другими индикаторами (платежеспособный спрос и выпуск) ситуация иная. Объемы этих показателей (продаж и производства) до сих пор считаются в российской промышленности недостаточными. Об этом явно свидетельствуют оценки предприятиями объемов платежеспособного спроса и производства по шкале "выше нормы", "нормальный", "ниже нормы" (см. рис.5).

Рис.5

Особенности формирования производственных и ценовых планов (прогнозов) предприятий российской промышленности в 1993-2001 гг.

В промышленности всегда и устойчиво преобладали ответы "ниже нормы" при оценке этих показателей. Промышленный рост 1999-2001 гг. не внес принципиальных изменений в соотношение оценок. Конечно, сейчас стало больше ответов "нормальный". В целом по промышленности доля таких ответов составляет 40%. Но остальные (т.е. большинство) считают и спрос, и выпуск недостаточными. По этой же причине, вероятно, прогнозы предприятий выпуска и продаж всегда оптимистичнее фактических изменений этих показателей. В такой ситуации корректировать свои очередные планы выпуска с учетом отклонений факта от предыдущих планов российским предприятиям сложно. Желаемое все еще довлеет над действительным.

Продолжим исследование адаптивных моделей формирования производственных планов с использованием точностей реализации предыдущих планов относительно фактических изменений основных видов спроса: платежеспособного, бартерного и прочих неденежных. Сначала рассмотрим модель, в которой очередные прогнозы выпуска определяются только точностью относительно платежеспособного спроса:

Q*t = f( Ф(Dt, Q*t-1) ),

где Q*t - ожидаемые изменения производства, зарегистрированные в момент (опрос) t; Dt - фактические изменения платежеспособного спроса, зарегистрированные в момент (опрос) t; Q*t-1 - планы изменения выпуска, зарегистрированные в момент (опрос) t-1, Ф(Dt, Q*t-1) - точность реализации ожидаемых изменений производства Q*t-1 относительно фактических изменений платежеспособного спроса Dt. Такая модель имела приемлемое, но не стабильное качество подгонки в 1993-1996 гг., затем наблюдаемый уровень значимости стал все реже превышать 5% порог (как правило, не более 4 раз в год) и не слишком сильно. Коэффициент модели, оценивающий линейную связь рангов, всегда был отрицательным, а статистически значимым - с конца 1995 г. Таким образом, предположение о том, что предприятия учитывают отклонения своих предыдущих планов выпуска от фактических изменений спроса пока не получило статистических аргументов.

Аналогичные результаты получены при тестировании модели с включением только точности планов выпуска относительно фактических изменений бартерного спроса. Такая модель в течение всего периода наблюдения за динамикой бартера (1998-2001 гг.) не подходит для описания формирования производственных планов предприятий. Наблюдаемый уровень значимости был нулевым. А коэффициенты модели - значимо отрицательными.

Почти столь же неподходящей была и адаптивная модель, использующая в качестве независимой переменной точность планов выпуска относительно динамики прочих видов спроса. Она имела приемлемое качество подгонки лишь в конце 2000 г. - начале 2001 г. и всегда - отрицательные коэффициенты, которые были статистически значимы.

Адаптивная модель с использованием точностей реализации предыдущих планов выпуска относительно всех трех видов спроса

Q*t = f( Ф(Dt, Q*t-1), Ф(Bt, Q*t-1), Ф(Nt, Q*t-1) )

не обеспечила хорошее качество подгонки (наблюдаемый уровень значимости был нулевым), но имела "желаемые" - для нормальной экономики - коэффициенты. Они были положительны и в половине случаев статистически значимы для точности платежеспособного спроса; отрицательны и редко значимы - для неденежных видов спроса (бартер, векселя, зачеты). Иными словами, при выработке следующих планов выпуска российские предприятия скорее учитывают отклонения предыдущих планов от платежеспособного спроса, чем от неденежных видов спроса.

Добавление в предыдущую модель точности планов выпуска относительно последующих фактических изменений производства позволило несколько улучшить качество подгонки модели (см. табл.9). Положительные коэффициенты имела лишь новая независимая переменная - точность предыдущих планов выпуска. Эти коэффициенты были и статистически значимы в течение всего периода наблюдения. Влияние точности относительно платежеспособного спроса стало положительным лишь в половине случаев и еще реже - статистически значимым. Больше положительных коэффициентов появилось у точности относительно бартерного спроса, но статистически значимых стало меньше. Точность относительно прочих неденежных видов спроса сохранила отрицательные коэффициенты, среди которых стало больше статистически значимых.

Таблица 9. Характеристики влияния точностей предыдущих планов выпуска относительно последующих фактических изменений выпуска, платежеспособного, бартерного и прочих неденежных видов спроса на производственные планы предприятий

Дата Характеристики качества подгонки модели Коэффициенты модели
Ф(Qt, Q*t-1) Ф(Dt, Q*t-1) Ф(Bt, Q*t-1) Ф(Nt, Q*t-1)
G2 Df Sig

Особенности формирования производственных и ценовых планов (прогнозов) предприятий российской промышленности в 1993-2001 гг.

SE

Особенности формирования производственных и ценовых планов (прогнозов) предприятий российской промышленности в 1993-2001 гг.

SE

Особенности формирования производственных и ценовых планов (прогнозов) предприятий российской промышленности в 1993-2001 гг.

SE

Особенности формирования производственных и ценовых планов (прогнозов) предприятий российской промышленности в 1993-2001 гг.

SE
2/00 158.86 156 0.4212 0.5332 0.1549 0.2092 0.1500 -0.1369 0.1407 -0.2093 0.1561
3/00 263.42 156 0.0000 0.6758 0.1071 0.0373 0.1144 0.0406 0.1252 -0.5011 0.1475
4/00 212.75 156 0.0017 0.7929 0.1135 -0.0551 0.1185 -0.1732 0.1446 -0.3385 0.1611
5/00 194.93 156 0.0187 0.7591 0.1249 0.0367 0.1278 -0.1109 0.1570 -0.4689 0.1646
6/00 158.09 156 0.4382 0.4332 0.1114 0.1107 0.1249 -0.1406 0.1482 -0.1479 0.1618
7/00 200.16 156 0.0098 0.5138 0.1333 -0.0277 0.1541 0.1891 0.1713 -0.3867 0.1807
8/00 198.44 156 0.0122 0.2805 0.1285 0.2364 0.1359 0.1155 0.1608 -0.3687 0.1842
9/00 202.79 156 0.0070 0.7163 0.1399 -0.1484 0.1256 0.3504 0.1670 -0.6379 0.1750
10/00 198.20 156 0.0126 0.7216 0.1236 -0.1849 0.1214 -0.1213 0.1348 -0.1406 0.1445
11/00 236.39 156 0.0000 0.5356 0.1097 -0.0425 0.1122 -0.0096 0.1402 -0.3404 0.1499
12/00 103.99 156 0.9995 0.3128 0.1214 0.0066 0.1393 0.0340 0.2022 -0.1647 0.2121
1/01 128.75 156 0.9457 0.6821 0.1319 -0.0114 0.1422 -0.4669 0.1846 -0.0661 0.1872
2/01 146.05 156 0.7046 0.5573 0.1182 -0.2186 0.1296 -0.4144 0.1846 0.1733 0.1964
3/01 211.24 156 0.0021 0.5491 0.1302 0.3538 0.1400 -0.3296 0.1750 -0.2999 0.1806
4/01 168.62 156 0.2317 0.8151 0.1221 -0.0642 0.1201 -0.2711 0.1443 -0.2371 0.1441
5/01 165.01 156 0.2951 0.4745 0.1290 0.0682 0.1278 -0.2749 0.1691 -0.0908 0.1717
6/01 192.95 156 0.0237 0.2191 0.1166 0.0394 0.1225 -0.0122 0.1641 -0.0284 0.1721
7/01 173.38 156 0.1618 0.6276 0.1191 -0.2042 0.1211 -0.0277 0.1422 -0.1938 0.1732
8/01 189.44 156 0.0352 0.7930 0.1333 -0.0734 0.1359 0.1231 0.1678 -0.6453 0.1964
9/01 204.62 156 0.0054 0.8107 0.1294 -0.3738 0.1458 -0.1393 0.1768 -0.1671 0.1967
10/01 181.22 156 0.0815 0.4924 0.1172 0.3646 0.1429 -0.3119 0.1891 -0.2897 0.2001
11/01 164.76 156 0.2999 0.5682 0.1213 -0.0113 0.1202 0.0291 0.1433 -0.3554 0.1536
12/01 107.78 156 0.9988 0.3913 0.1509 0.0522 0.1704 -0.2752 0.2415 0.1866 0.2618

Примечание. В таблице приведены: G2 - величина отношения правдоподобия; df - число степеней свободы; Sig - наблюдаемый уровень значимости; коэффициенты Особенности формирования производственных и ценовых планов (прогнозов) предприятий российской промышленности в 1993-2001 гг., оценивающие линейную связь (ассоциацию) рангов каждого из факторов с производственными планами, и стандартные ошибки (SE).

Подводя итог исследованию адаптивных моделей для описания планов формирования производственных планов, можно следующие выводы. Во-первых, такой тип формирования планов, скорее всего, не характерен для российских промышленных предприятий. Во-вторых, использование в адаптивных моделях спросовых переменных значительно расширило аналитические возможности, но также не дало устойчивых и логичных результатов. В-третьих, отрицательные коэффициенты моделей показывают, что предприятия, вероятно, не склонны верить отклонениям фактических изменений показателей и корректировать с учетом этого свои очередные планы выпуска. Они предпочитают сохранять прежнее направление своих намерений. "Мягкие" постановки адаптивных моделей подтвердили этот тезис: влияние на очередные планы предыдущих намерений всегда и существенно превосходило влияние фактических изменений выпуска. В-четвертых, точности прогнозов всех видов спроса не оказывали значимого влияния на производственные планы предприятий. В-пятых, самой удачной оказалась адаптивная модель с включением точностей прогнозов всех факторов в состав независимых переменных. При этом значимое положительное влияние на производственные планы имели только неденежные виды спроса. Это объясняется тем, что в период оценки модели фактические изменения неденежных видов спроса имели желаемую для предприятий динамику, что и делало возможным ее учет при выработке следующих планов. А недостаточные объемы денежного спроса и выпуска не позволяли российским предприятиям адекватно учитывать их изменения при выработке очередных планов.


Информация о работе «Особенности формирования производственных и ценовых планов (прогнозов) предприятий российской промышленности в 1993-2001 гг.»
Раздел: Экономика
Количество знаков с пробелами: 184209
Количество таблиц: 24
Количество изображений: 5

Похожие работы

Скачать
144167
30
16

... ООО «РУБИН-ПЛЮС» НА 2003 г. . Как уже указывалось ранее (глава 1.) особое значение в российских условиях приобретают разработка и реализация планов организации и развития бизнеса – бизнес-план . Статистические данные о неудачах новых предприятий указывают на то , что риск достаточно велик . Для предвидения и возможного предотвращения этих проблем используется бизнес – план . В ...

Скачать
262648
16
15

... и укрепления его позиций на внешнем и внутреннем рынках (рис. 1.3). Важность разработки эффективной системы организационно-экономических мероприятий поддержки управления конкурентоспособностью промышленного предприятия подтверждается работами [10, 21, 47,73]. ВЫВОДЫ К ПЕРВОЙ ГЛАВЕ Исследования, проведенные в первой главе, позволили сделать следующие выводы: 1. Высокая ...

Скачать
84590
11
1

... хотелось бы сделать некоторые общие выводы и дать рекомендации к развитию и совершенствованию ценовой политики компании Цептер в условиях становления рыночной экономики. В работе рассмотрены теоретико-методологические основы формирования стратегии ценообразования и построения ценовой политики предприятия. Проанализирована стратегия ценообразования компании «Цептер» - международной компании по ...

Скачать
65646
4
4

... стратегическому развитию целесообразно разделить на два ключевых направления: – разработка общей концепции развития предприятия: стратегия предприятия и его бизнес единиц (стратегический маркетинг); – детализация общей концепции развития, формирование инвестиционного портфеля, разработка бизнес-планов проектов и дальнейшая их реализация (управление инвестициями). Для эффективной деятельности ...

0 комментариев


Наверх