А.Н. Зубков, Омский государственный педагогический университет, кафедра алгебры
Пусть G простая алгебраическая группа одного из трех классических типов - B, C, D, над алгебраически замкнутым полем K произвольной характеристики. Группа G=G(n) канонически вложена в GL(n) для подходящего n [8]. Рассмотрим диагональное действие группы G на - m экземплярах пространства
матриц M(n) сопряжениями. Возникает интересная задача - описать кольцо инвариантов In,m=K[M(n)m]G(n) . В предлагаемой работе будет доказано, что имеет место естественный эпиморфизм
, который индуцирован каноническим отображением
, где
тогда и только тогда, когда
, или
(для симплектического случая определение другое, здесь зануляются все элементы вне "центрального"
-блока). На остальных местах отображение тождественно.
Все необходимые сведения о модулях с хорошей фильтрацией (кратко модули с ХФ), можно найти в [5].
Мы будем использовать идею доказательства теоремы 2 из [5]. Пусть .
Cлучай B, D. Мы будем предполагать, что . Подходящим образом изменяя базис, мы можем считать, что
. Более того, так как действие сопряжениями, то можно полагать даже, что
.
Пара аффинных G-многообразий (G - произвольная редуктивная группа) называется хорошей, если K[W] и IV - G- модули с ХФ. Здесь IV - это идеал
. Пусть W=M(n), V= C(A)=CG(A), где
. Наша задача сейчас - показать, что
и, что
- хорошая пара.
Нетрудно проверить, что g-1Ag = En + (a-1)(xij), где xij = g1ig1j, g=(gij), En - единичная матрица. Обозначим через M(n)r множество матриц ранга , а через S - подпространство симметрических матриц в M(n).
Лемма 1. Класс сопряженности V совпадает с , где T - это множество всех матриц, удовлетворяющих условиям
.
Обозначим множество через L
Доказательство. Легко проверить непосредственно, что M(n)1 совпадает с множеством матриц вида (xiyj), где независимо пробегают все векторы из n-мерного векторного пространства E(n). Пусть
и лежит в
. Тогда xiyj = yixj. Найдутся xi0 и yj0 не равные нулю, ведь
. Тогда из xi0yj0 = yi0xj0 следует, что
. Далее, если xi =0, тогда xi0yi= yi0xi =0, то есть yi=0 и наоборот. Другими словами, xi =0 тогда и только тогда, когда yi =0. Более того, для ненулевых коэффициентов отношение xi/yi является константой. Обозначим ее t. Переходя к параметрам xi'=t-1/2xi=yi'=t1/2yi, можно предполагать, что xi=yi для всех i. Подставляя в уравнения определяющие T и используя то, что
, мы получим, что
. Достроим cистему из одного вектора x до ортонормированного базиса пространства E(n) и расположим векторы этого базиса столбцами (причем x - первый) в матрице g. Ясно, что
, и g-1Ag = En + (a-1)z. Таким образом,
. Обратное включение очевидно.
Поскольку , то мы можем воспользоваться леммой 1 (
) [7] и заключить, что
, если докажем, что
нормальное многообразие. Cдвиг и умножение на (ненулевой) скаляр - гомеоморфизмы, поэтому достаточно показать, что нормально L. Пусть Sn - единичная сфера в E(n). Из сказанного выше ясно, что отображение из Sn в L по правилу
является доминантным. В частности, мы имеем вложение
. Образ этого вложения порожден элементами xixj. Алгебра
имеет градуировку
, где R0 - подпространство, натянутое на мономы четной степени, а R1 - нечетной. Элемент
однороден относительно этой градуировки, поэтому
"наследует" градуировку R. Будем обозначать ее теми же символами. Заметим еще, что K[L]=R0. Ранг якобиана
равен 1 по крайней мере на
, и
. По критерию Серра ([6]
, теорема 5.8.6), K[Sn] нормально (
). Пусть теперь
- целый над R0. Так как
, то
и
. Следовательно,
, то есть
, откуда z1=0.
Согласно предложению 6.7 [2], чтобы доказать, что (
отождествляется с
, где ZG(A) - централизатор элемента A, достаточно проверить, что дифференциал
сюръективен. Однако
. Используя формализм с двойными числами [8], имеем:
. Таким образом,
. Отсюда ясно, что образ
имеет ту же размерность n-1. Итак,
. Отметим еще для дальнейшего, что ZG(A) состоит из матриц, у которых правый "нижний"
-угол - это произвольная матрица из G(n-1), а в первом столбце и первой строке везде стоят нули, кроме начала, где коэффициент равен
.
По тем же соображениям, что и выше, осталось показать, что (M(n), L) - хорошая пара. Согласно лемме 1.3(a) [4], можно рассмотреть "башню" и проверить каждый "скачок". Рассмотрим сначала
. Мы имеем коммутативную (все морфизмы G-эквивариантны) диаграмму:
где вертикальные стрелки - это просто включения. Переходя к координатным алгебрам, мы получим "дуальную" диаграмму:
В первой диаграмме горизонтальные стрелки - G-доминантные морфизмы, поэтому во второй - вложения. Отсюда ясно, что можно отождествить с
(в принятых выше обозначениях). Здесь I - идеал, порожденный элементом f. Из тех же градуировочных соображений ясно, что
. Осталось отметить, что f G-инвариант и, следовательно, G-модуль
изоморфен R0. То, что R0 с ХФ, будет следовать из того, что
- хорошая пара.
Пусть теперь по правилу
. Ясно, что
-эквивариантное отображение, где K* = GL(1) действует по правилу
. Напомним, что отображение G-многообразий
называется факторным, если
сюръективно и
. Хорошо известно, что
K*-факторное отображение [4]. Обозначим через
. Покажем, что (U, B) - хорошая пара. Функтор ограничения переводит GL(n)-модули с ХФ в G-модули с ХФ. Алгебра
изоморфна
как
-модуль (Kl - это одномерный K*-модуль с весом l). Хорошо известно, что GL(n)-модуль Sk(E(n)) с ХФ [9]. По теореме Донкина-Матье, K[U]
-модуль с ХФ. Заметим, что достаточно доказывать наличие ХФ только относительно G. Представим алгебру K[U] в виде
. Отождествление происходит по правилу
, где
- стандартный базис E(n), а f1,f2 - E(2). Cогласно [1],
имеет
-фильтрацию c факторами
, где
- функтор Шура,
пробегает все разбиения с
. Нетрудно заметить, что идеал, порожденный xiyj-xjyi, совпадает с той частью фильтрации, где
. Поскольку
без кручения [3], то
. В частности, IB с ХФ как G-модуль, а значит, и как
-модуль. В итоге многообразия U, B, Z удовлетворяют условиям предложения 1.4(a) из [4]. А это значит в частности, что
- хорошая пара. Осталось заметить, что (M(n), M(n)1) - хорошая GL(n)-пара по [4]. Согласно сказанному выше, это также хорошая G-пара. В частности, хорошей G-парой будет
, что и требуется.
Случай C. Здесь доказательство аналогично ортогональному случаю. Мы только вкратце повторим основные моменты, указав отличие от рассмотренного выше. Матрица A остается той же самой. При этом у элементов группы ZG(A) первые и последние строки и столбцы нулевые, кроме элементов на диагонали, которые взаимно обратны и пробегают K*. Кроме того, "серединный" -квадрат лежит в G(n-2)=Spn-2(K). Далее, легко проверить, что класс сопряженности C(A) совпадает с En + (a-1)L, где
. В частности, он уже замкнут. Проверка того, что
отождествляется с факторным
совершенно аналогична. Здесь
, образ Lie(G) состоит из матриц того же вида, что и в ортогональном случае, только коэффициенты первой строки и первого столбца никак не связаны друг с другом и поэтому размерность образа тоже равна 2n-2. Наконец, (M(n), L) - очевидно хорошая пара. Достаточно рассмотреть башню
и использовать то, что tr(x)-1 - G-инвариант! Заметим еще, что в симплектическом случае характеристика поля произвольна.
Пусть теперь G - любая группа типа B, D, C. Дословно повторяя доказательство теоремы 2 из [5], мы получим эпиморфизм , индуцированный
(на остальных общих матрицах отображение тождественно). Разбив матрицы из M(n) на блоки в соответствии с блочным "строением" группы ZG(A), мы видим, что пространство M(n) изоморфно (так как ZG(A)-многообразие)
в ортогональном случае и
в симплектическом. Здесь K и K4 тривиальные модули, а на En-1 (соответственно на En-2) ZG(A) действует как G(n-1) (G(n-2)) c точностью до умножения на скаляр. Отсюда ясно, что каноническое отображение
(
), даст эпиморфизм
(
). Пусть Rn,m - Q-алгебра, порожденная следами от всевозможных произведений общих матриц, или транспонированных к ним (в случае C - симплектически транспонированных).
Лемма 2. Суперпозиция описанных выше отображений - это просто и затем - каноническое на остальных матрицах.
Доказательство. К сожалению, размеры статьи, допустимые в данном журнале, не позволяют нам привести полное доказательство. Поэтому мы просто отметим здесь, что In,m порождается элементами из После этого утверждение леммы очевидно, ведь произведение матрицы A на матрицы Xi(n), у которых приравнены нулю коэффициенты левого верхнего "угла" (или "окаймления" в случае C), дает тот же результат, что и произведение единичной матрицы.
В силу сделанного выше замечания о порождающих In,m специализация отображает In,m+1 в In,m. Отсюда уже легко получается основная теорема.
Теорема. Каноническое отображение алгебры K[M(n)m] в K[M(n-1)m] ( в случае C) индуцирует эпиморфизм колец инвариантов.
Список литературы
Akin K., Buchsbaum D.A., Weyman J. Shur functors and Shur complexes// Adv. in Math. Vol.44. P.207-278 (1982).
Борель А. Линейные алгебраические группы. M.: Мир., 1972.
De Concini C., Procesi C. A characteristic free approach to invariant theory// Adv. in Math. 1976. Vol.21. P. 330-354.
Donkin S. The normality of conjugacy classes of matrices// Inv. Math., Vol.101. P.717-736 (1990).
Donkin S. Invariants of several matrices// Invent. Math. Vol.110. P.389-401 (1993).
Grotendick A., Dieudonne J. Elements de geometrie algebriques// Inst. Hautes Etudes Sci.Publ.Math. 4. 1960-1967.
Grosshans F. Observable subgroups and Hilbert's fourteenth problem// Am.J. Math. 95. P.229-253 (1973).
Humphreys J.E. Linear algebraic groups/ Springer Verlag. 1975.
Zubkov A.N. Endomorphisms of tensor products of exterior powers and Procesi hypothesis// Commun. in Algebra. 22(15). 6385-6399 (1994).
Для подготовки данной работы были использованы материалы с сайта http://www.omsu.omskreg.ru/
Похожие работы
... 1976. - С. 143]. Являясь выражением общественного сознания прошлого, детская сказка сама формирует определенные аспекты индивидуального сознания настоящего и будущего. Как социогенетическая; инварианта, относительно стабильная на протяжении веков, сказка является одним из самых чистых и живительных источников формирования у ребенка эстетических эталонов и представлений, в частности, об идеальной ...
... которыми оно пользуется в своем воздействии на людей, - это видимость и обман»33. Как видим, именно через такое воззрение на искусство мы можем определить отношение одного из представителей немецкой классической философии к категории игры. Итак, Гегель определяет искусство как «приятную игру». В этом прямая перекличка с Кантом - отнесение игры к сфере незаинтересованного удовольствия. Теперь ...
... Образ внешнего человека в функционально-семиотическом аспекте (на материале русского языка) // Вест. Омск. ун-та. 2001. Вып. 1. С.68-70 Коротун, 2002 Коротун О.В. Образ-концепт «внешний человек» в русской языковой картине мира: Автореф. дис. … канд. филол. наук. Омск, 2002. Котрюрова, 1997 Котюрова М.П. Стилистический и прагматический подходы к тексту: некоторые основания их дифференциации // ...
... во времени испытания, предназначенные для установления количественных (и качественных) индивидуально-психологических различий. По форме: Индивидуальные и групповые. Устные и письменные (по форме ответа). Бланковые, предметные, аппаратурные, компьютерные (по материалу оперирования). Вербальные и невербальные (по характеру стимульного материала). По содержанию: Тесты интеллекта. Тесты ...
0 комментариев