2. Аналитическая часть.

2.1 Диаграмма состояния сплава Cu-Be и ее характеристика.

U
 
Y
 
R
 
Q
 
S
 

N

 

L

 

K

 

H

 

G

 

F

 

E

 

D

 

C

 

A

 
B
 

1

 

2

 

Рис 1. Диаграмма состояния бинарного сплава Cu – Be (с содержанием Be до 12%);

1- исходный сплав Cu + 2,3%Be ; 2 – сплав насыщенный Be до 2,7%.

 

Как видно из диаграммы, температура плавления чистой меди 1083°С (т. С на рис.1). При увеличении содержания бериллия температура начала и конца затвердевания сплавов понижается, достигая минимума. На диаграмме он соответствует 860°С и концентрации 5,25% Be (т. К на рис.1) и лежит над однородной областью b-фазы. При дальнейшем увеличении содержания бериллия температура начала и конца затвердевания сплавов повышается.

В системе Cu – Be (с содержанием Be до 12%) имеются фазы a, b, g. По Н.Х. Абрикосову, фазы b и g(b') являются единым бертоллидом (химическим соединением переменного состава), а сплав, отвечающий химическому соединению CuBe, лежит за пределами области однородного твердого раствора g (b') [2].

Фаза a представляет собой твердый раствор Be в Cu, с максимальной растворимостью Be составляющей 2,7% при температуре 866°С (т. В на рис.1). При этих условиях она имеет гранецентрированную кубическую кристаллическую решетку с периодом 3,566Å. Растворимость Be с понижением температуры снижается, его значение изменяется по кривым ВА и AL (см. рис.1), и при температуре эвтектоидного распада b фазы она равна 1,55% , при 350°С — менее 0,4%.

При 866°С в интервале концентраций бериллия 2,75 - 4,2% по перитектоидной реакции между a-фазой и жидкостью образуется фаза b (). Сплавы, содержащие от 2,75 до 4,2% (по массе) бериллия, имеют одинаковую температуру конца затвердевания около 866°С (1139К) — линия BD соответственно. Микроструктура этих сплавов после закалки с 840°С состоит из a+b фазы. При увеличении содержания бериллия температура начала и конца затвердевания сплавов понижается. Минимальное значение (т. К на рис.1), как указывалось ранее, достигается при температуре 860°С и концентрации 5,25% Be и лежит на диаграмме состояния над однородной областью b-фазы. При этой концентрации температура начала и конца превращения  совпадают и оно идет не в интервале температур, а при постоянной температуре. Если дальше увеличивать содержание бериллия, то превращение снова идет в интервале температур и температура начала и конца затвердевания сплавов повышается. Микроструктура сплавов, содержащих от 4,3 до 8,4% (по массе) Be, после закалки с температуры 840°С состоит из одних кристаллов b. Фаза b выше линии AFG » 605°С (условно принятая средняя температура распада этой фазы) — неупорядоченный твердый раствор бериллия в меди. Период его неупорядоченной объемно-центрированной кубической решетки при содержании 7,2% Be и температуре 750°С равен 2,79Å.

При закалке с температуры 840°С сплавов с содержанием бериллия больше 8,4% , вплоть до 11% микроструктура состоит из кристаллов b и g фазы. В гомогенной области g-фаза (в некоторых источниках b'-фаза) содержит от 11,3 до 12,3% Be. Она представляет собой упорядоченную фазу на основе интерметаллида CuBe с упорядоченной объемно-центрированной кубической решеткой типа CsCl и периодом 2,69-2,7Å. Эта фаза получается при реакциях: выделение из b-фазы () в интервале температур 605 - 870°С и концентраций 6 - 11%Ве — по линии FH; эвтектоидное превращение b-фазы () при температуре 605°С и концентрациях 1,5-11,5%Ве — AFG соответственно.

Ниже линии эвтектоидного равновесия (линия AFG на рис.1), в интервале концентраций бериллия 0,2-11,5% (интервал L-N на рис.1 соответственно) идет реакция выделения: , при которой из пересыщенной бериллием фазы a выделяется g-фаза с большим его содержанием.

В системе имеются перитектическое (2,75 – 4,2% Be) и эвтектоидное (1,5 – 11,5% Be) равновесия, при 866 и 605°С соответственно, имеются фазовые превращения типа растворение-выделение, ввиду ограниченной растворимости Be в различных модификациях меди.

Теперь рассмотрим превращения, происходящие конкретно в сплаве Cu + 2,3%Be (сплав №1 на рис.1).

В сплаве 1 со снижением температуры с 1000 до 980°С (т. S) не происходит никаких превращений (область существования только жидкой фазы), дальше в интервале S-Q (980-875°С) идет кристаллизация из жидкости кристаллов a-фазы, при этом состав жидкости меняется по линии ликвидус, а кристаллов по солидус. Как видно из диаграммы, при этом и жидкость и кристаллическая фаза обогащаются Ве, судя из характера расположения этих линий, соответственно количество бериллия в центре кристалла и на его поверхности различное, т.е. существует ликвация Ве как в объеме сплава, так и по самой дендритной ячейке. В интервале температур Q-R (875-740°С) существует одна a-фаза, а после, при охлаждении примерно до 605°С (т. Y на рис.1), идет обеднение a-фазы бериллием по линии ВA и выделение b-фазы. При охлаждении ниже 605°С в выделявшемся доселе неупорядоченном твердом растворе замещения b при эвтектоидном превращении идет упорядочение — образование фазы g (b'): атомы меди располагаются преимущественно в узлах решетки, а атомы бериллия — в центре [1]. Хотя в реальном кристалле этот порядок точно не соблюдается: атомы меди могут занять места бериллия и наоборот. Рентгенограммы g (b') в системе Cu-Be выявляют линии сверхструктуры, которые отсутствуют у b-фазы. После прохождения эвтектоидной реакции () в сплаве находится три вида фаз: a-фаза, которая образовалась при кристаллизации, a-фаза, которая образовалась при эвтектоидной реакции из b-фазы, и g (b')-фаза, которая также образовалась при эвтектоидном превращении. При дальнейшем охлаждении в интервале 605-20°С идет также обеднение a-фазы бериллием по линии AL и выделение, дополнительно, g(b')-фазы.



Информация о работе «Определение и обоснование видов и режимов структурной обработки сплава Cu+2,3%Be»
Раздел: Металлургия
Количество знаков с пробелами: 48017
Количество таблиц: 3
Количество изображений: 11

Похожие работы

Скачать
140975
39
36

... отпуска может быть на 10–20оС ниже, а его продолжительность на 20–25% меньше, чем первого отпуска. Охлаждение после отпуска проводится на воздухе. 1.1.5 Влияние термической обработки на свойства штамповых сталей Служебные свойства штампового инструмента и его стойкость в значительной степени определяются соответствующим назначением марки стали, ее термообработкой и условиями эксплуатации ...

Скачать
105583
49
12

... механических нагрузок. Наиболее изнашиваемой частью двигателя гоночного автомобиля является поршень цилиндра. По утверждению специалистов немецкой фирмы Mahle, являющейся лидером в производстве поршней гоночных автомобилей, «стоимость поршня болида Formula –1 практически можно приравнять к цене золота». Основными материалами, используемыми в двигателях Формулы-1, являются алюминиевые магниевые, ...

Скачать
25915
4
11

... которая в этот момент равна его растворимости.   1.5 Предложить теоретически обоснованные мероприятия, направленные на предупреждение взаимодействия сплава с кислородом в процессе его приготовления и заливки 1) Плавка в вакууме (отсутствие кислорода). 2) Плавка в среде нейтральных или защитных газов. Исключается процесс окисления, нейтральные газы (Ar и N) создают над поверхность расплава ...

Скачать
133990
34
13

... этапе является более дешевым оборудованием, чем молот. 3. При внедрении и реализации нового технологического процесса штамповки детали типа "фланец" их хромоникелевого жаропрочного сплава уменьшается количество технологических операций, уменьшается суммарная трудоемкость процесса. 4. В рамках разработки нового технологического процесса проведены основные технологические расчеты: определена ...

0 комментариев


Наверх