МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ


БЕЛАРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИНФОРМАТИКИ И РАДИОЭЛЕКТРОННИКИ


Кафедра химии


Факультет компьютерного проектирования


КУРСОВАЯ РАБОТА

по курсу: «Физико-химические основы микроэлектроники и технологии РЭС и ЭВС»

на тему:

«ТУННЕЛИРОВАНИЕ В МИКРОЭЛЕКТРОНИКЕ »


Выполнил: Приняла:

студент гр. 910204 Забелина И. А.

Шпаковский В.А.


Минск 2001 г.


СОДЕРЖАНИЕ

стр.

1. Туннельный эффект……………………………………………………………………………3

2. ПРОЯВЛЕНИЕ В НЕОДНОРОДНЫХ СТРУКТУРАХ, ИСПОЛЬЗОВАНИЕ В УСТРОЙСТВАХ МИКРОЭЛЕКТРОНИКИ

2.1 Контакт металл-металл…………………………………………………………...…………..5

2.2 Структура металл-диэлектрик-металл………….……………………………………………8

2.3 Токоперенос в тонких плёнках………………………………………………………………10

2.4 Туннельный пробой в p-n-переходе…………………………………………………………12

2.5 Эффекты Джозефсона………………………………………………………………………...13

2.6 Эффект Франца-Келдышева………………………………………………………………….15

3 Туннельный диод…..…………………………………………………………………………17

Литература………………………………………………………………………………………….20


Туннельный эффект

Рассмотрим поведение частицы при прохождении через потенциальный барьер. Пусть частица, движущаяся слева направо, встречает на своём пути потенциальный барьер высоты U0 и ширины l (рис. 1.1). По классическим представлениям движение частицы будет таким:

U(x) - если энергия частицы будет больше высоты барьера (E>U0),

то частица беспрепятственно проходит над барьером;

U0 - если же энергия частицы будет меньше высоты барьера

E (EU0 имеется отличная от ну-

0 l x ля вероятность того, что частица отразится от потенциального

Рис.1.1 Прохождение частицы барьера и полетит обратно. Во-вторых, при EE, волновой вектор k2 является мнимым. Положим его равным ik, где является действительным числом. Тогда волновые функции и приобретут следующий вид:

(1.9)

(1.10)

Так как , то это значит, что имеется вероятность проникновения микрочастицы на некоторую глубину во вторую область. Эта вероятность пропорциональна квадрату модуля волновой функции :

. (1.11)

Наличие этой вероятности делает возможным прохождение микрочастиц сквозь потенциальный барьер конечной толщины l (рис. 1.1). Такое просачивание получило название туннельного эффекта. По формуле (1.11) коэффициент прозрачности такого барьера будет равен:

, (1.12)

где D0 – коэффициент пропорциональности, зависящий от формы барьера. Особенностью туннельного эффекта является то, что при туннельном просачивании сквозь потенциальный барьер энергия микрочастиц не меняется: они покидают барьер с той же энергией, с какой в него входят.

Туннельный эффект играет большую роль в электронных приборах. Он обуславливает протекание таких явлений, как эмиссия электронов под действием сильного поля, прохождение тока через диэлектрические плёнки, пробой p-n перехода; на его основе созданы туннельные диоды, разрабатываются активные плёночные элементы.



Информация о работе «Туннелирование в микроэлектронике»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 28068
Количество таблиц: 0
Количество изображений: 44

Похожие работы

Скачать
49696
0
4

... будут отличаться от сегодняшних и будущих роботов, разве только нейропроцессором. Но и модели поведения нейросистем, несмотря на отсутствие аппаратных реализаций, хорошо проработаны и изучены. Развитие молекулярной нанотехнологии даст возможность тщательно изучить процессы, протекающие внутри клеток организма. Есть большие основания полагать, что точное знание того, как функционируют клетки, ...

Скачать
97096
0
5

... беспредельной ёмкостью памяти, а спецификой механизмов, предохраняющих человеческую память от "переполнения". По быстродействию (скорости записи и воспроизведения информации) машинная память значительно превосходит память человека. Скорость срабатывания элементов, на основе которых строятся современные ЗУ, определяется в конечном счете скоростью протекания электронных процессов, в то время как ...

Скачать
19635
0
11

... хвильової функції : . (1.11) Наявність цієї ймовірності уможливлює проходження мікрочастинок крізь потенційний бар'єр кінцевої товщини l (мал. 1.1). Таке просочування одержало назву тунельного ефекту. По формулі (1.11) коефіцієнт прозорості такого бар'єра буде рівний: , (1.12) де D0 – коефіцієнт пропорційності, що залежить від форми бар'єра. Особливістю тунельного ефекту є те, що при ...

Скачать
41005
5
0

... и 0,18-микронному техпроцессу. Общий принцип работы ячейки флэш-памяти. Рассмотрим простейшую ячейку флэш-памяти на одном n-p-n транзисторе. Ячейки подобного типа чаще всего применялись во flash-памяти с NOR архитектурой, а также в микросхемах EPROM. Поведение транзистора зависит от количества электронов на "плавающем" затворе. "Плавающий" затвор играет ту же роль, что и конденсатор в DRAM, т. ...

0 комментариев


Наверх