2.1 КОНТАКТ МЕТАЛЛ-МЕТАЛЛ


Рассмотрим плотный контакт двух металлов М1 и М2 с разными работами выхода А1 и А2 (рис. 2.1.1).

A1 A2



EF1 n21


n12 EF2

d




M1 M2


Рис. 2.1.1 Энергетическая диаграмма контакта двух металлов в начальный момент времени


Вследствие того, что уровень Ферми EF1 в М1 (уровень Ферми это то значение энергии уровня, выше которого значения энергии электрон принимать не может при Т=0 К) находится выше, чем EF2 в М2, соответствующие работы выхода А1n21 и соответствующие термоэлектронные токи I1>I2. Для этих токов мы можем записать уравнения термоэлектронной эмиссии:

; (2.1.2)

, (2.1.3)

где А* - постоянная Ричардсона; S –площадь контакта.

После выравнивания уровней Ферми поток I2 останется неизменным, а поток I1 уменьшиться, так как для того, чтобы перейти электрону из М1 в М2 кроме преодоления работы выхода А1 ему необходимо преодолеть разность потенциалов в зазоре Vk. Тогда ток I1 станет равным:

. (2.1.4)

При равенстве уровней Ферми двух металлов I1=I2 и результирующий ток через контакт равен нулю. Величину тока, текущего из одного металла в другой в равновесном состоянии, обозначим как Is=I1=I2.

Теперь рассмотрим процессы, происходящие в контакте при пропускании через него внешнего тока. Пусть внешнее поле прикладывается так, что оно складывается с напряжением Vk. Тогда полное напряжение на контакте будет равным V1=Vk+V.

Электронный ток справа налево I2=Is останется неизменным, а ток слева направо уменьшиться, так как высота энергетического барьера для этих электронов увеличится. Уравнение для тока I1 можно записать в виде:

. (2.1.5)

Так как Is=I1 в выражении (2.4), то получим:

. (2.1.6)

Результирующий ток будет направлен справа налево и равен:

. (2.1.7)

В случае, если внешняя разность потенциалов приложена в обратном направлении, то ток I1 будет больше, чем I2=Is. В этом случае ток I1 равен:

, (2.1.8)

тогда результирующий ток равен:

. (2.1.9)

Если току и напряжению приписывать положительный знак, когда они направлены слева направо, то выражение (2.1.7) для результирующего тока примет такой же вид, как и выражение (2.1.9). Поэтому выражение (2.1.9) называют уравнением вольтамперной характеристики контакта двух металлов.

Из выражения (2.1.9) видно, что контакт металл-металл обладает выпрямляющим действием. При V>0 ток увеличивается по экспоненте, а при V+EF):

, (2.2.3)

где - высота потенциального барьера; d- ширина зазора; u- -
приложенное напряжение; m- масса электрона. Из полученных
выражений видно, что при малых напряжениях характеристика
линейна, а при увеличении на­пряжения ток резко возрастает.

Однако реальный барьер имеет более сложную форму. Поэтому
детальный расчёт вольт-амперной характери­стики должен производиться с учётом сил изображения, различия эффективных масс носителей заряда в металле и диэлектрике, а также с учётом пространственного заряда электронов, тун­нелировавших из металла в зону проводимости диэлектрика, и электронов, попавших на ловушки в диэлектрике. Симмонсом Дж. был предложен метод расчёта туннельного тока для барьера произ­вольной формы. Он ввёл понятие о барьере средней величины. Этот метод принципиально позво­ляет вычислить туннельный ток с учётом названных факторов, однако при этом получаются очень громоздкие выражения. Анализ результатов расчёта по методу Симмонса показывает, что при малых напряжениях вольтамперная характеристика является линейной, а при больших напряжениях пере­ходит в экспоненциальную зависимость. При дальнейшем увеличении напряжения туннельный ток ограничивается пространственным зарядом в диэлектрике. На рис. 2.2.1 показаны расчётные вольт-амперные характеристики с учётом пространственного заряда.

Из рисунка видно, что большой про­странственный заряд может сильно ограничивать туннельный ток сквозь слой диэлектрика. Большое количество экспериментальных работ было вы­полнено по изучению туннельного прохождения электронов сквозь тонкие диэлектрические слои. Плёнки диэлектриков обычно создавались либо термическим окислением металлов, либо распыле­нием в вакууме. Исследованию были подвергнуты плёнки Al2O3, Ta2O5, TiO2, Сu2O, Сu2S, SiO, GeO2, и других соединений. Практически во всех системах наблюдалось качественное совпадение экспериментальных вольт-амперных характеристик с расчётными. В начале имеет место линейное возрастание тока с ростом напряжения, затем оно пе­реходит в экспоненциальное с последующим замедлением роста тока. Последнее обстоятельство, как и предполагалось при теоретическом рас­чёте, вызвано ловушками в диэлектрических слоях. При соответствующем подборе высоты контакт­ного барьера, эффективной площади структуры, эффек­тивной массы электрона в диэлектрике и дру­гих параметров наблюдается количественное совпаде­ние. На рис. 2.2.2 приведена вольт-амперная ха­рактеристика туннельного тока сквозь слой А12О3 тол­щиной d=2,3 нм. Точками показаны экспериментальные результаты, сплошной линией – расчётные. Наблюдаемые в отдельных случаях количественные расхождения в теоритических и экспериментальных результах вызваны, по-видимому, несовершенством структуры и геометрии плёнок.


j, а/см2


107 1

2

103 3



10-1


10-5


10-9

1 10 100 1000 u, B


Рис. 2.2.1 Расчётные вольт-амперные характеристики туннельного тока:

1 – без учёта пространственного заряда;

2 – с учётом пространственного заряда подвижных носителей;

3 – с учётом пространственного заряда на ловушках при большой их плотности.


j, а/см2


1


10-1



10-2


10-3


10-4

0,5 1 1,5 2 u, B


Рис. 2.2.2 Вольт-амперная характеристика туннельного тока сквозь плёнку Al2O3. Точки – экспериментальные данные, сплошная линия – расчёт.



Информация о работе «Туннелирование в микроэлектронике»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 28068
Количество таблиц: 0
Количество изображений: 44

Похожие работы

Скачать
49696
0
4

... будут отличаться от сегодняшних и будущих роботов, разве только нейропроцессором. Но и модели поведения нейросистем, несмотря на отсутствие аппаратных реализаций, хорошо проработаны и изучены. Развитие молекулярной нанотехнологии даст возможность тщательно изучить процессы, протекающие внутри клеток организма. Есть большие основания полагать, что точное знание того, как функционируют клетки, ...

Скачать
97096
0
5

... беспредельной ёмкостью памяти, а спецификой механизмов, предохраняющих человеческую память от "переполнения". По быстродействию (скорости записи и воспроизведения информации) машинная память значительно превосходит память человека. Скорость срабатывания элементов, на основе которых строятся современные ЗУ, определяется в конечном счете скоростью протекания электронных процессов, в то время как ...

Скачать
19635
0
11

... хвильової функції : . (1.11) Наявність цієї ймовірності уможливлює проходження мікрочастинок крізь потенційний бар'єр кінцевої товщини l (мал. 1.1). Таке просочування одержало назву тунельного ефекту. По формулі (1.11) коефіцієнт прозорості такого бар'єра буде рівний: , (1.12) де D0 – коефіцієнт пропорційності, що залежить від форми бар'єра. Особливістю тунельного ефекту є те, що при ...

Скачать
41005
5
0

... и 0,18-микронному техпроцессу. Общий принцип работы ячейки флэш-памяти. Рассмотрим простейшую ячейку флэш-памяти на одном n-p-n транзисторе. Ячейки подобного типа чаще всего применялись во flash-памяти с NOR архитектурой, а также в микросхемах EPROM. Поведение транзистора зависит от количества электронов на "плавающем" затворе. "Плавающий" затвор играет ту же роль, что и конденсатор в DRAM, т. ...

0 комментариев


Наверх