Реферат по химии
Тема: Белки.
Выполнила ученица 11 Б класса
Средней школы №84
Ярославль 2004
Оглавление.
1. Оглавление…………………………………………………………2
2. Введение……………………………………………………………3
3. Строение белков……………………………………………………5
4. Классификация белков…………………………………………….8
5. Физические свойства ……………………………………………..11
6. Химические свойства
1)Гидратация……………………………………………………12
2)Денатурация…………………………………………………..13
3)Пенообразование……………………………………………..14
4)Горение………………………………………………………..14
5)Цветные реакции……………………………...……………...14
6)Амфотерные свойства………………………………………..14
7)Гидролиз………………………………………………………15
7. Значение белков
1)Белки-ферменты……………………………………………..16
2)Белки-гормоны……………………………………………….17
3)Белки-средства защиты……………………………………...18
4)Роль белков для человека……………………………………19
8.Приложение…………………………………………………………21
9. Список используемой литературы………………………………..30
БЕЛКИ.
Белками, или белковыми веществами называют высокомолекулярные (молеку- лярная масса варьирует от 5-10 тыс. до 1 млн. и более) природные полимеры, моле- кулы которых построены из остатков аминокислот, соединенных амидной (пепти- дной) связью.
Белки также называют протеинами (от греч. «протоc» - первый, важный). Число остатков аминокислот в молекуле белка очень сильно колеблется и иногда достигает нескольких тысяч. Каждый белок обладает своей, присущей ему последовательнос- тью расположения аминокислотных остатков. Белок можно рассматривать как слож- ный полимер аминокислот. Белки входят в состав всех живых организмов, но особо важную роль они играют в животных организмах, которые состоят из тех или иных форм белков (мышцы, покровные ткани, внутренние органы, хрящи, кровь). Растения синтезируют белки (и их составные части a-аминокислоты) из углекислого газа СО2 и воды Н2О за счет фотосинтеза, усваивая остальные элементы белков (азот N, фосфор Р, серу S, железо Fe, магний Mg) из растворимых солей, находящихся в почве.
Белки выполняют разнообразные биологические функции: пластическая, транс- портная, защитная, энергетическая, каталитическая, сократительная, регуляторная и другие.(см.таблицу№5). Белки, поступающие в организм с животной и растительной пищей, гидролизуется конечном счете до a-аминокислот. Наш организм устроен так, что часть a-амино- кислот –незаменимые аминокислоты -должна обязательно содержаться в пище. Для взрослого человека их всего 8, для детей 10. А вот остальные– заменимые аминокис- лоты организм синтезирует сам - был бы в достатке азот, без которого ни один белок не может существовать. Этот процесс осуществляется в печени.
Белки выполняют функцию биокатализаторов-ферментов, регулирующих скорость и направление химических реакций в организме. В комплексе с нуклеиновыми кислотами обеспечивают функции роста и передачи наследственных признаков, являются структурной основой мышц и осуществляют мышечное сокращение.
Белок представляет собой полипептид, содержащий сотни или тысячи аминокислотных звеньев.
СТРОЕНИЕ БЕЛКОВ.
В пространственном строении белков большое значение имеет характер радика-лов (остатков) R- в молекулах аминокислот. Неполярные радикалы аминокислот обычно располагаются внутри макромолекулы белка и обуславливают гидрофобные взаимодействия; полярные радикалы, содержащие ионогенные (образующие ионы) группы, обычно находятся на поверхности макромолекулы белка и характеризуют электростатические (ионные) взаимодействия. Полярные неионогенные радикалы (например, содержащие спиртовые OH-группы, амидные группы) могут располагать ся как на поверхности, так и внутри белковой молекулы. Они участвуют в образова- нии водородных связей.
В молекулах белка a-аминокислот связаны между собой пептидными(–CO–NH–) связями:
Построенные таким образом полипептидные цепи или отдельные участки внутри полипептидной цепи могут быть в отдельных случаях дополнительно связаны между собой дисульфидными (–S–S–)связями, или, как их часто называют, дисульфидными мостиками.
Большую роль в создании структуры белков играют ионные (солевые) и водоро- дные связи, а также гидрофобное взаимодействие—особый вид контактов между гидрофобными компонентами молекул белков в водной среде. Все эти связи имеют различную прочность и обеспечивают образование сложной, большой молекулы белка.
Несмотря на различие в строении и функциях белковых веществ, их элементный состав колеблется незначительно (в % на сухую массу): углерода–51–53; кислорода– 21,5–23,5; азота–16,8–18,4; водорода–6,5–7,3; сера–0,3–2,5. Некоторые белки содер- жат в небольших количествах фосфор, селен и другие элементы.
Особый характер белка каждого вида связан не только с длиной, составом и строением входящих в его молекулу полипептидных цепей, но и с тем, как эти цепи ориентируются. Различают четыре уровня организации белковых молекул: 1.Первичной структурой белка — последовательность аминокислотных остатков в полипептидной цепи. Белковая молекула может состоять из одной или нескольких полипептидных цепей, каждая из которых содержит различное число аминокислотных остатков. Разнообразие белков почти безгранично, но не все из них существуют в природе.
|
3.Третичная структура белка — реальная трехмерная конфигурация закрученной спирали полипептидной цепи в пространстве (спираль, скрученная в спираль). Тре- тичная структура белка обуславливает специфическую биологическую активность белковой молекулы. В формировании третичной структуры, кроме водородных свя- зей, большую роль играет ионное и гидрофобное взаимодействие. По характеру «упаковки» белковой молекулы различают глобулярные, или шаровидные, и фибр- илллярные, или нитевидные, белки.
Для глобулярных белков более характерна a-спиральная структура, спирали изогнуты, «свернуты».Макромолекула имеет сферическую форму. Они растворяют- ся в воде и солевых растворах с образованием коллоидных систем. Большинство белков животных, растений и микроорганизмов относится к глобулярным белкам.
Для фибриллярных белков более характерна нитевидная структура. Они не раст- воряются в воде. Фибриллярные белки обычно выполняют структурообразующие функции. Их свойства (прочность, способность растягиваться) зависят от способа упаковки полипептидных цепочек. Примером фибриллярных белков служат белки мускульной ткани(миозин), кератин(роговая ткань).
4.Четвертичная структура белка — относится к макромолекулам, в состав кото- рых входит несколько полипептидных цепей (субъединиц), не связанных между со- бой ковалентно. Между собой эти субъединицы соединяются водородными, ионы- ми, гидрофобными и другими связями. Примером может служить макромолекула гемоглобина.
КЛАССИФИКАЦИЯ БЕЛКОВ.
Существует несколько классификаций белков. В их основе лежат разные призна- ки:
· степень сложности (простые и сложные);
· форма молекулы (глобулярные и фибриллярные белки);
· растворимость в отдельных растворителях;
· выполняемая функция.
По составу белки делят на простые, состоящие только из аминокислотных остат- ков (протеины), и сложные (протеиды). Сложные могут включать ионы металла (ме- таллопротеиды) или пигмент (хромопротеиды), образовывать прочные комплексы с липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеиды), а также ковалентно связывать остаток фосфорной кислоты (фосфопротеиды), углевода (гли- копротеины) или нуклеиновой кислоты (геномы некоторых вирусов).
По ряду характерных свойств протеины можно разделить на несколько подгрупп:
Альбумины. Они растворимы в воде, свёртываются при нагревании, нейтральны, сравнительно трудно осаждаются растворами солей. Примерами их могут служить: альбумин белка куриного яйца, альбумин кровяной сыворотки, альбумин мускуль- ной ткани, молочный альбумин.
Глобулины. Они нерастворимы в воде, но растворяются в очень слабых раство- рах солей. Примерами глобулинов могут служить: фибриноген, глобулин кровяной сыворотки, глобулин мускульной ткани, глобулин белка куриного яйца.
Гистоны. Белки основного характера. Находятся в виде нуклеопротеидов в лейкоцитах и красных кровяных шариках.
Протамины. Не содержат серы, обладают сравнительно сильными основными свойствами, дают кристаллические соли; содержатся (в виде нуклеопротеинов) в сперматозоидах рыб.
Проламины. Находятся в зернах различных хлебных злаков. Замечательной их особенностью является растворимость в 80% -ном спирте. Представителем этих бел- ов может служить глиадин, составляющий главную часть клейковины.
Склеропротеины. Нерастворимые белки, которые составляют наружный покров тела животного и находятся в скелете и в соединительной ткани. К ним относятся кератин, коллагены, эластин, фиброин.
Кератин является главной составной частью волос, рогов, копыт, ногтей, перьев и верхнего слоя кожи. По химическому составу кератин богат серой
Коллагены. Чрезвычайно распространены в живых организмах. Из коллагенов сос- тоит соединительная ткань; они находятся в хрящах. Кости позвоночных животных состоят из неорганических веществ (фосфорнокислого и углекислого кальция), жира и коллагенов.
Эластин входит в состав жил и других эластичных веществ соединительной ткани.
Протеиды также можно разделить на несколько групп:
Фосфопротеиды содержат в своем составе фосфор. Они имеют определенно выраженный кислотный характер.
Главнейшим представителем фосфопротеидов является казеин молока. Он обладает настолько ясно выраженным кислотным характером, что разлагает углекислые соли с выделением углекислого газа. Казеин растворяется в слабых растворах щелочей, образуя с ними соли. Соли казеина называются казеинатами.
При нагревании казеин не свертывается. При действии кислот на соли казеина он выделяется в свободном виде. Этим объясняется свертывание молока при прокиса- нии. Из других фосфоропротеинов следует отметить вителлин, который находится в желтке куриного яйца.
Нуклеопротеиды находятся в клеточных ядрах. При осторожном гидролизе они расщепляются на белок и нуклеиновую кислоту.
Хромопротеиды. Под этим названием известны протеиды, которые представляют собой сочетание белков с окрашенными веществами. Из хромопротеидов наиболее изучен гемоглобин красящее вещество красных кровяных шариков. Гемоглобин, соединяясь с кислородом, превращается в оксигемоглобин, который, отдавая свой кислород другим веществам, снова превращается в гемоглобин. Значение гемоглобина в жизни человека и животных очень велико. Он играет роль переносчика кислорода от легких к тканям. Образовавшийся в легких оксигемоглобин кровью разносится по телу и, отдавая свой кислород, способствует протекание в организме окислительных процессов. Кроме того, гемоглобин вместе с плазмой крови осуществляет регуляцию величины pH крови и перенос углекислоты в организме.
Гликопротеиды. Некоторые белки этой группы встречаются в слизистых соединениях животных организмов и обусловливаются свойства этих выделений тянуться в нити даже при сравнительно большом разбавлении. Эти белки образуются в подчелюстной железе, печени, железах желудка и кишечника. Другие гликопротеиды находятся в хрящах, яичном белке, стекловидном теле глаза и т.д. Исследованные представители гликопротеидов являются сочетанием белков с веществами, содержащими остатки некоторых производных углеводов, серной и уксусной кислот.
ФИЗИЧЕСКИЕ СВОЙСТВА.
Белки – амфотерные электролиты. При определенном значении pH среды число положительных и отрицательных зарядов в молекуле белка одинаково. Белки имею разнообразное строение. Есть белки нерастворимые в воде, есть белки легко раство- римые в воде. Есть белки малоактивные в химическом отношении, устойчивые к действию агентов. Есть белки крайне неустойчивые. Есть белки, имеющие вид ни-тей, достигающих в длину сотен нанометров; есть белки, имеющие форму шариков диаметром всего 5–7 нм. Они имеют большую молекулярную массу (104—107).
ХИМИЧЕСКИЕ СВОЙСТВА.
1.Гидратация.
Процесс гидратации означает связывание белками воды, при этом они проявляют гидрофильные свойства: набухают, их масса и объем увеличивается. Набухание бел- ка сопровождается его частичным растворением. Гидрофильность отдельных белков зависит от их строения. Имеющиеся в составе и расположенные на поверхности бел- ковой макромолекулы гидрофильные амидные (–CO–NH–, пептидная связь), амин- ные (NH2) и карбоксильные (COOH) группы притягивают к себе молекулы воды, строго ориентируя их на поверхность молекулы. Окружая белковые глобулы гидрат- ная (водная) оболочка препятствует устойчивости растворов белка. В изоэлектричес- кой точке белки обладают наименьшей способностью связывать воду, происходит разрушение гидратной оболочки вокруг белковых молекул, поэтому они соединяют- ся, образуя крупные агрегаты. Агрегация белковых молекул происходит и при их обезвоживании с помощью некоторых органических растворителей, например этило- вого спирта. Это приводит к выпадению белков в осадок. При изменении pH среды макромолекула белка становится заряженной, и его гидратационная способность ме- няется.
При ограниченном набухании концентрированные белковые растворы образуют сложные системы, называемые студнями. Студни не текучи, упруги, обладают плас-тичностью, определенной механической прочностью, способны сохранять свою фор- му. Глобулярные белки могут полностью гидратироваться, растворяясь в воде (нап- ример, белки молока), образуя растворы с невысокой концентрацией. Гидрофильные свойства белков имеют большое значение в биологии и пищевой промышленности. Очень подвижным студнем, построенным в основном из молекул белка, является цитоплазма– полужидкое содержимое клетки. Сильно гидратированный студень–сырая клейковина, выделенная из пшеничного теста, она содержит до 65% воды. Гидрофильность, главное качество зерна пшеницы, белков зерна и муки играет боль- шую роль при хранении и переработке зерна, в хлебопечении. Тесто, которое полу- чают в хлебопекарном производстве, представляет собой набухший в воде белок, концентрированный студень, содержащий зерна крахмала.
... или нескольких аминокислот образуется более сложное соединение - полипептид. Полипептиды, соединяясь, образуют еще более сложные и крупные частицы и в итоге - сложную молекулу белка. Роль белков в организме. Функции белков в организме разнообразны. Они в значительной мере обусловлены сложностью и разнообразием форм и состава самих белков. Белки - незаменимый строительный материал. Одной из ...
... , вызывает уменьшение количества синтезируемых ферментов. Это последнее явление получило название репрессии синтеза ферментов. Оба явления — индукция и репрессия — взаимосвязаны. Согласно теории Жакоба и Моно в биосинтезе белка у бактерий участвуют по крайней мере три типа генов: структурные гены, ген-регулятор и ген-оператор. Структурные гены определяют первичную структуру синтезируемого белка. ...
... + щелочная ср. NH2 R R R COOH COO – COO – Катион Амфион Анион Таким образом, фактором, определяющим поведение белка как катиона или аниона, является реакция среды, которая определяется концентрацией водородных ионов и выражается величиной рН. Однако ...
... удовлетворительного фракционирования белков объем наносимого раствора не должен превышать 3-5% общего объема колонки. Ввиду этого к гель-хроматографии обычно прибегают в середине или на завершающих этапах выделения белка. Разумеется, при отделении низкомолекулярных примесей, в частности при обессоливании, объем образца может быть значительно большим, поскольку не требуется высокого разрешения. В ...
0 комментариев