2. СТРУКТУРА И РЕЖИМЫ РАБОТЫ ЭС
Знания, которыми обладает специалист в какой-либо области (дисциплине), можно разделить на формализованные (точные) и неформализованные (неточные). Формализованные знания формулируются в книгах и руководствах в виде общих и строгих суждений (законов, формул, моделей, алгоритмов и т.п.), отражающих универсальные знания. Неформализованные знания, как правило, не попадают в книги и руководства в связи с их конкретностью, субъективностью, и приблизительностью. Знания этого рода являются результатом обобщения многолетнего опыты работы и интуиции специалистов. Они обычно представляют собой многообразие эмпирических (эвристических) приемов и правил.
В зависимости от того, какие знания преобладают в той или иной области (дисциплине), ее относят к формализованным (если преобладают неточные знания) описательным областям. Задачи, решаемые на основе точных знаний, называют формализованными, а задачи, решаемые с помощью неточных знаний,- неформализованными. (Речь идет не о неформализуемых, а о неформализованных задачах, т.е. о задачах, которые, возможно, и формализуемы, но эта формализация пока неизвестна.
Традиционное программирование в качестве основы для разработки программы использует алгоритм, т.е. формализованное знание. Поэтому до недавнего времени считалось, что ЭВМ не приспособлены для решения неформализованные задач. Расширение сферы использования ЭВМ показало, что неформализованные задачи составляют очень важный класс задач, вероятно, значительно больший, чем класс формализованных задач. Неумение решать неформализованные задачи сдерживает внедрение ЭВМ в описательные науки. Основной задачей информатики является внедрение ее методов в описательные науки и дисциплины. На основании этого можно утверждать, что исследования в области ЭС занимают значительное место в информатике.
Ньюэлл предложил относить к неформализованным задачам те, которые обладают одной или несколькими из следующих особенностей:
алгоритмическое решение задачи неизвестно (хотя, возможно, и существует) или не может быть использовано из-за ограниченности ресурсов ЭВМ (времени, памяти);
задача не может быть определена в числовой форме (требуется символьное представление);
цели задачи не могут быть выражены в терминах точно определенной целевой функции.
Как правило, неформализованные задачи обладают неполнотой, ошибочностью, неоднозначностью и (или) противоречивостью знаний (как данных, так и используемых правил преобразования).
Экспертные системы не отвергают и не заменяют традиционного подхода к программированию, они отличаются от традиционных программ тем, что ориентированы на решение неформализованных задач и обладают следующими особенностями:
алгоритм решений не известен заранее, а строится самой ЭС с помощью символических рассуждений, базирующихся на эвристических приемах;
ясность полученных решений, т.е. система "осознает" в терминах пользователя, как она получила решение;
способность анализа и объяснения своих действий и знаний;
способность приобретения новых знаний от пользователя-эксперта, не знающего программирования, и изменения в соответствии с ними своего поведения;
обеспечение "дружественного", как правило, естественно-языкового (ЕЯ) интерфейса с пользователем.
Обычно к ЭС относят системы, основанные на знаниях, т.е. системы, вычислительная возможность которых является в первую очередь следствием их наращиваемой базы знаний (БЗ) и только во вторую очередь определяется используемыми методами. Методы инженерии знаний (методы ЭС) в значительной степени инвариантны тому, в каких областях они могут применяться. Области применения ЭС весьма разнообразны: военные приложения, медицина, электроника, вычислительная техника, геология, математика, космос, сельское хозяйство, управление, финансы, юриспруденция и т.д. Более критичны методы инженерии знаний к типу решаемых задач. В настоящее время ЭС используются при решении задач следующих типов: принятие решений в условиях неопределенности (неполноты), интерпретация символов и сигналов, предсказание, диагностика, конструирование, планирование, управление, контроль и др.
СТРУКТУРА И РЕЖИМЫ РАБОТЫ ЭСЭкспертные системы – это сложные программные комплексы, аккумулирующие знания специалистов в конкретных предметных областях и тиражирующие этот эмпирический опыт для консультаций менее квалифицированных пользователей.
Пользователь Инженер по знаниям
Эксперт
Пользователь – специалист предметной области, для которого предназначена система. Обычно его квалификация недостаточно высока и поэтому он нуждается в помощи и поддержке своей деятельности со стороны экспертной системы.
Инженер по знаниям – специалист по ИИ, выступающий в роли промежуточного буфера между экспертом и базой знаний.
Интерфейс пользователя – комплекс программ, реализующих диалог пользователя с ЭС как на стадии ввода информации, так и на стадии получения результатов.
База знаний (БЗ) – ядро ЭС, представляющее собой совокупность знаний предметной области, записанная на машинный носитель в форме, понятной пользователю и эксперту.
Решатель - программа, моделирующая ход рассуждений эксперта на основе знаний, имеющихся в БЗ.
Подсистема объяснений – программа, позволяющая пользователю получать ответы на вопросы: “Как была получена та или иная рекомендация ?” и “Почему система приняла такое решение?”
Интеллектуальный редактор БЗ – программа, представляющая инженеру по знаниям возможность создавать БЗ в диалоговом режиме. Включает подсистему вложенных меню, шаблонов языка представления знаний, подсказок и т.д.
Экспертная система работает в двух режимах: приобретения знаний и решения задач (называемом также режимом консультации или режимом использования ЭС).
В режиме приобретения знаний общение с ЭС осуществляет через посредничество инженера по знаниям эксперт. Эксперт описывает проблемную область в виде совокупности данных и правил. Данные определяют объекты, их характеристики и значения, существующие в области экспертизы. Правила определяют способы манипулирования данными, характерные для рассматриваемой проблемной области. Эксперт, используя компонент приобретения знаний, наполняет систему знаниями, которые позволяют ЭС в режиме решения самостоятельно (без эксперта) решать задачи из проблемной области.
Важную роль в режиме приобретения знаний играет объяснительный компонент. Именно благодаря ему эксперт на этапе тестирования локализует причины неудачной работы ЭС, что позволяет эксперту целенаправленно модифицировать старые или вводить новые знания. Обычно объяснительный компонент сообщает следующее: как правила используют информацию пользователя; почему использовались или не использовались данные или правила; какие были сделаны выводы и т.п. Все объяснения делаются, как правило, на ограниченном естественном языке или языке графики.
В режиме консультации общение с ЭС осуществляет конечный пользователь, которого интересует результат и (или) способ получения решения. Пользователь в зависимости от назначения ЭС может не быть специалистом в данной проблемной области, в этом случае он обращается к ЭС за советом, не умея получить ответ сам, или быть специалистом, в этом случае он обращается к ЭС, чтобы либо ускорить процесс получения результата, либо возложить на ЭС рутинную работу. Термин "пользователь" является многозначным, так как кроме конечного пользователя применять ЭС может и эксперт, и инженер по знаниям, и программист.
В режиме консультации данные о задаче пользователя обрабатываются диалоговым компонентом, который выполняет следующие действия:
распределяет роли участников (пользователя и ЭС) и организует их взаимодействие в процессе кооперативного решения задачи;
преобразует данные пользователя о задаче, представленные на привычном для пользователя языке, во внутренний язык системы;
преобразует сообщения системы, представленные на внутреннем языке, в сообщения на языке, привычном для пользователя (обычно это ограниченный естественный язык или язык графики).
После обработки данные поступают в РП. На основе входных данных из РП, общих данных о проблемной области и правил из БЗ решатель (интерпретатор) формирует решение задачи.
В отличие от традиционных программ ЭС в режиме решения задачи не только исполняет предписанную последовательность операций, но и предварительно формирует ее. Если ответ ЭС не понятен пользователю, то он может потребовать объяснения, как ответ получен.
... , выполнение работ, предоставление услуг). Система предназначена для применения на складах или для лиц, занимающихся реализации продукции. Раздел 1. Описание объекта для разработки и создания автоматизированной системы обработки информации. Проблема учета отгрузки и реализации готовой продукции на предприятии – одна из важнейших проблем на любом предприятии. Система учета отгрузки и реализации ...
... рисунков в формате А0-А1 со скоростью 10-30 мм/с. Фотонаборный аппарат Фотонаборный аппарат можно увидеть только в солидной полиграфической фирме. Он отличается своим высоким разрешением. Для обработки информации фотонаборный аппарат оборудуется процессором растрового изображения RIP, который функционирует как интерпретатор PostScript в растровое изображение. В отличие от лазерного принтера в ...
... необходимостью экономить трудовые, материальные и финансовые ресурсы. Отсюда вытекают и специальные требования, предъявляемые автоматизированным системам обработки информации. Прежде всего, система должна отвечать основным функциональным требованиям, в качестве которых выступают операции экономического отдела городской налоговой инспекции. Кроме того, к АСОЭИ предъявляются и основные системные ...
... Конфигурациями Задачами управления Конфигурациями являются контроль изменяющейся ИТ – инфраструктуры (стандартизация, верификация и регистрация), сбор и управления Документацией по Ит – инфраструктуре, а также предоставления информации об ИТ-инфраструктуре для всех других процессов. 14. Управления Изменениями Управление Изменениями направлено на контроль проведения изменений в ИТ- ...
0 комментариев