2.3. Шумовые характеристики фотодетекторов.

Фотодетектор волоконного оптического гироскопа преобразует оптическую интерференционную картину на входе в выходной электрический сигнал. Поскольку интенсивность интерференционного оптического сигнала зависят от соотношения фаз двух интерферирующих лучей, амплитуда электрического сигнала, линейно связанная с интенсивностью оптического сигнала, отображает упомянутые фазовые соотношения. В свою очередь, в соответствии с эффектом Саньяка разность фаз двух лучей пропорциональна угловой скорости вращения ВОГ. Именно эта специфика применения фотодетектора в ВОГ налагает определенные требования на параметры и характеристики фотодетектора. Прежде всего фотодетектор должен обладать очень высокой чувствительностью или высоким разрешением с тем, чтобы «чувствовать» такие градации изменения интенсивности, которые соответствуют разности фаз оптических колебаний порядка 10 -7 рад, что эквивалентно угловой скорости вращения ВОГ примерно град/ч (требуемая точность для систем инерциальной навигации). Для реализации такой чувствительности нужно минимизировать собственные шумы фотодетектора (темновой ток и тепловые шумы нагрузочного сопротивления). Фотодетектор должен обеспечивать требуемый динамический диапазон и быстродействие. Зависимость характеристик фотодетектора от изменений окружающих условий (температуры, вибраций и т, д.) должна быть минимальной. Спектральная характеристика должна быть согласована с длиной волны излучателя. Кроме того, фотодетектор должен иметь малые габариты и массу, отвечать условиям совместимости со световодами и электронными устройствами, потреблять малую энергию. При массовом производстве ВОГ фотодетектор должен быть дешевым и по возможности изготовлен в твердотельном исполнении.

В настоящее время этим требованиям с наибольшей полнотой удовлетворяют твердотелые полупроводниковые фотодиоды (ФД), р-i-n фотодиоды и лавинные фотодиоды (ЛФД). При выборе фотодетекторов для ВОГ сравнение их производится по ряду характеристик, основные из которых приводятся ниже.

n Квантовая эффективность (квантовый выход) - отношение среднего числа эмиттированных фотоэлектронов (или других носителей заряда)

n Интегральная (общая) чувствительность - отношение среднего тока фотодетектора к среднему значению мощности оптического излучения, падающего на детектор (измеряется в А/Вт).

n Пороговая чувствительность (эквивалентная мощность шумов) - среднеквадратическое значение потока излучения, промодулированного по синусоидальному закону, который создает на выходе фотодетектора напряжение, равное среднеквадратическому значению напряжения шумов (измеряется в Вт/Гц1/2).

n Спектральная характеристика — это зависимость квантовой эффективности или чувствительности фотодетектора от длины волны падающего на него монохроматического излучения. При выборе фотодетектора необходимо, чтобы максимум спектральной характеристики совпадал с длиной волны принимаемого излучения.

n Частотной характеристикой называется зависимость чувствительности фотодетектора от частоты синусоидальной модуляции интенсивности оптического излучения.

n Постоянной времени фотодетектора называется время от начала воздействия входного светового потока до момента, когда выходной сигнал фотодетектора достигает 0,63 максимального значения.

n Темновой ток - это ток фотодетектора при отсутствии внешнего облучения.

При выборе фотодетектора для ВОГ необходимо в требуемом спектральном диапазоне обеспечивать максимальную интегральную чувствительность, минимальную эквивалентную мощность шумов и минимальный темновой ток.

Частотная характеристика и быстродействие фотодетектора играют менее значительную роль, поскольку максимальная частота изменения угловой скорости, измеряемой ВОГ, всегда укладывается в полосу пропускания ФД, не зависимо от применения вспомогательной модуляции.

Полупроводниковые фотодиоды характеризуются хорошей спектральной и интегральной чувствительностью. Они обладают высокой квантовой эффективностью и малой инерционностью; их параметры стабильны во времени.

Принцип работы полупроводникового диода основан на фотовольтаическом эффекте, который состоит в том, что при облучении неоднородного полупроводника светом возникает фототок (или фото-ЭДС). Высокочувствительные фотодиоды и лавинные фотодиоды с внутренним усилением тока конструируются на основе р-n-переходов, р-i-n-структур или переходов металл-полупроводник.

Во всех структурах фотовозбужденные электроны н дырки, образующиеся внутри области перехода и в объеме полупроводника, диффундируют к переходу, образуя фототок. Для образования свободной электронно-дырочной пары с обеих сторон от p-n-перехода необходимо, чтобы энергия поглощенного фотона была больше ширины запрещенной зоны. Образование и диффузия пар электрон-дырка сопровождается появлением потенциала в сечении перехода. Под действием электрического поля перехода электрон движется в направлении n-области, а дырка - в направлении p-области.

Таким образом происходит расщепление пар. Избыток электронов в n-области и дырок в p-области приводит к тому, что n-область заряжается отрицательно, а p-область - положительно. На разомкнутых концах детектора появляется ЭДС; подсоединение к концам сопротивления приведет к появлению продетектированного тока.

Фотодиоды могут включаться как без источников тока, так и последовательно с источником постоянного тока напряжением от нескольких вольт до 100 В. Во втором случае чувствительность детектора значительно повышается. При анализе шумовых свойств фотодиодов (т.е. при необходимости найти отношение сигнал/шум или опреде­лить чувствительность ВОГ, ограниченную только фото­приемником) обычно требуется учитывать три вида шумовых токов:

1) шумовой ток, возникающий при детек­тировании светового потока (дробовой шум); 2) шумовой ток, обусловленный случайным тепловым движением элек­тронов в нагрузочном сопротивлении и в последующих электронных цепях; 3) шумовой ток самого фотодиода, основная составляющая которого обусловлена темновым током.

Если уменьшить тепловой шум нагрузочного сопротив­ления изменением эффективной температуры сопротивле­ния, а принципиально неустранимый дробовой шум счи­тать малым, то пороговую чувствительность фотодиода будет определять темновой ток. С этой точки зрения для реализации максимальной пороговой чувствительности не­обходимо выбирать фотодиод с минимальными темновыми токами. Величина темнового тока зависит от свойств ма­териала фотодиода, температуры, площади р-n - перехода, конструктивных особенностей и т. д.

В фотодиодах с р - i - n - переходом до­вольно широкая область собственной проводимости ( i - об­ласть) расположена между двумя областями полупровод­ника противоположного знака проводимости; в i-области распределено сильное однородное электрическое поле, что способствует увеличению чувствительности фотодиода.

Чувствительность германиевых и кремниевых р - i - n - фотодиодов составляет 0.5... 0.6 А/Вт, темновой ток при глубоком охлаждении (77 К) может быть доведен до 10-11 А.

В последнее время разработаны р-i-n - фотодиоды на основе InGaAs/InP, которые совместно с усилителем на полевом транзисторе (FЕТ) образуют интегральную схему; такой р-i-n- FEТ- приемник работает в диапазоне длин волн 1,3...1,5 мкм, имеет высокую квантовую эф­фективность 0.65 ... 0.7, малую емкость - 0.15 рF, что определяет высокое быстродействие. Фотодиод смонтиро­ван в кварцевом блоке, в котором имеется небольшое от­верстие для ввода волоконного светодиода с диаметром сердечника 50 мкм, при этом оптический сигнал с волокна полностью перехватывается фотодиодом. Кварцевый блок монтируется на толстопленочной гибридной схеме предва­рительного усилителя. Подвод световода к схеме герметизирован. Предварительный усилитель содержит транзистор (GaAs МЕSFЕТ), сопротивление смещения 10МОм, два кремниевых биполярных транзистора с граничной частотой около 7 ГГц и толстопленочные сопротивления, изготовленные на гибридной схеме. Чувствительность такого модульного р - i - n -FЕТ-приемника составляет -53 дБм; интересно отметить, что при изменении окружающей температуры от 20 до 60" С чувствительность изменяется только на 1 дБ.

Лавинный фотодиод (ЛФД) является твердотельным аналогом фотоэлектронного умножителя. В нем используется механизм ударной ионизации в области сильного поля обратносмещенного перехода. Умножение тока происходит вследствие столкновения возникающих в результате фотоионизации электронно-дырочных пар с атомами кристаллической решетки полупроводника. Этот эффект под влиянием сильного поля смещения в условиях лавины порождает большое количество электронно-дырочных пар. В результате ток существенно увеличивается даже на сверхвысоких частотах. При лавинном усилении тока для средних уровней светового потока и высокого коэффициента лавинного умножения чувствительность приемного устройства определяется отношением сигнала к квантовому шуму. Для низких уровней светового потока и малого коэффициента лавинного умножения отношение сигнал-шум и порог чувствительности ограничиваются тепловым шумом.

Лавинные фотодиоды характеризуются большим темновым током, чем фотодиоды, а следовательно, и более низкой чувствительностью, даже если реализовано достаточно высокое усиление тока, позволяющее при низких уровнях сигнала превзойти тепловой шум. Кроме того процесс умножения вносит избыточный шум. Однако лавинный фотодиод имеет более высокую квантовую эффективность. Использование кремниевых или германиевых лавинных фотодиодов позволяет существенно повысить общую чувствительность широкополосных приемных устройств. При выборе лавинного фотодиода для приемной системы необходимо, помимо квантового выхода и широкополосности, учитывать специфические факторы, присущие только лавинному фотодиоду, такие, как усиление по току и связанные с ним ограничения, а также избыточные шумы. Технология изготовления лавинных фотодиодов сложна. Это обусловлено необходимостью обеспечения пространственной равномерности умножения носителей по всей светочувствительной площадке диода и минимизации утечки по краям перехода. Для уменьшения утечки используют защитные кольца. Обычно разброс в усилении из-за пространственной неравномерности умножения носителей составляет от 20 до 50% при среднем усилении 1000.

В лавинном фотодиоде усиление максимально в режиме, когда смещение на диоде приближается к пробивному напряжению. При напряжениях, больших пробивного, протекает самоподдерживающийся лавинный ток, который все менее и менее зависит от концентрации носителей, появляющихся под действием светового потока. В рабочем режиме максимальное усиление лавинных фотодиодов ограничивается либо эффектами насыщения, вызванными протекающим током, либо произведением коэффициента усиления на полосу пропускания. Эффект насыщения умножения носителей обусловлен тем, что носители, выходящие из области, в которой происходит умножение, уменьшают электрическое поле внутри перехода и создают падение напряжения на последовательном резисторе и на нагрузке диода. Ограничение же полосы пропускания объясняется перемещением вторичных электронов и дырок (образованных посредством ионизации) по области умножения в противоположных направлениях еще некоторое время после того, как первичные носители покинули переход. Избыточный шум в лавинных фотодиодах обусловлен флуктуациями процесса умножения носителей.

 Простейшими лавинными фотодиодами являются кремниевые диоды с защитным кольцом и с диаметром светочувствительной площадки от 40 до 200мкм; рабочий диапазон волн - примерно от 0,4 до 0,8 мкм. Германиевые лавинные п+- р-диоды имеют рабочий диапазон волн от 0,5 до 1,5 мкм. Произведение коэффициента усиления по току на полосу пропускания для кремниевых и германиевых лавинных фотодиодов равно соответственно 100 и 60 ГГц. Следовательно, при усилении по току 100 и 60 использование в приемной системе кремниевого или германиевого лавинного фотодиода обеспечивает полосу про пускания в 1 ГГц.

В настоящее время ведутся интенсивные разработки лавинных фотодиодов на основе GaAs, InAs и InSb, обладающих высоким усилением и ничтожным избыточным шумом.

На основе соединения GaAlAsSb созданы ЛФД на диапазон длин волн 1... 1,4 мкм, превосходящие по параметрам германиевые ЛФД. Для длин волн 1... 1,7 мкм применяют соединения типа InGaAsP; значительного улучшения характеристик ЛФД ожидают при использовании гетероструктур на основе InGaAsP/InP. Кроме того, продолжаются работы по созданию интегральных схем, являющихся комбинацией ЛФД и входного усилителя на полевом транзисторе (так называемые FЕT-ЛФД), что позволяет улучшить качество фотоприемника.


 

 n  p

<G>

 n,p  n,p p,n p,n

 

Рис 2.4. Основные этапы фотоэлектрического преобразования при детектировании оптического сигнала.

Независимо от вида полупроводникового приемника основные этапы фотоэлектрического преобразования можно проиллюстрировать схемой на рис.2.4. Она включает в качестве первичного акта поглощение излучения и генерацию свободных носителей заряда, механизм внутреннего усиления, обусловленный размножением носителей, если такой предусмотрен, а также этап формирования выходного сигнала, что определяет условия согласования фотоприемника с нагрузкой, включая выходные цепи усилительных звеньев в случаях внешнего усиления сигнала. Каждому этапу соответствуют свои параметры процесса, уровень шумов, ограничивающих для фотоприемников различного типа и различных комбинаций приемников с усилителями добротность, пороговую чувствительность, надёжность. Необходимость в ряде случаев усиления сигнала после его детектирования предполагает модуляцию светового потока поступающего на вход приемника, или его фототока.

Чувствительность фотоприемника и ее спектральное распределение определяется отношением

,

(2.66)

где l в мкм. В этом выражении

- фототок, сигнал на выходе фотоприемника, соответствующий

входной оптической мощности

 ;

n, N0 - скорости генерации фотоносителей в фотоприемнике и фотонов на его поверхности соответственно;  

-заряд электрона, постоянная Планка, скорость света соответственно;

- квантовая эффективность - количественная характеристика внутреннего фотоэффекта. Зависимости , как правило, экстремальны с максимумом при , что обусловлено спектральной зависимостью коэффициента поглощения излучения в данном материале.

Для правильно сконструированных фотоприемников с антиотражающими покрытиями оптимальные значения , что позволяет при расчетах в первом приближении принимать .

Чувствительность фотоприемника определяется также средним

значением коэффициента внутреннего усиления фототока величина которого флуктуирует относительно <G>. Если внутреннее усиление является следствием лавинного размножения носителей (как в лавинных фотодиодах), то <G> определяется как средняя статистическая величина за время действия светового импульса.

Если усиление обусловлено пролётным временем носителей (как в фоторезисторах), то <G> определяется средним (объемным и поверхностным) временем жизни фотоносителей

, (2.67)

ограничивающим быстродействие фотоприёмника.

Для фотодиодов без внутреннего усиления ( p - n, p - i - n, с барьером Шотки)

(2.68)

У лавинных фотодиодов с <G> » 50-100

У быстродействующих фотоприёмников с фотопроводящим каналом на основе гетероэпитоксиальных плёнок AlGaAs/GaAs, AlInAs/GaInAs, GaInAs/InP

Минимальная детектируемая мощность  (порог чувствительности) ограничивается отношением сигнал-шум (с/ш) фотопреобразователя. Его шумовые свойства удобно характеризовать эквивалентной мощностью шума (Вт/Гц1/2)

, (2.69)

где - входная оптическая мощность, при которой отношение с/ш равно 1.

При правильно спроектированном фотопреобразователя электронная часть не вносит дополнительных шумов, превышающих дробовый шум приёмника и

, (2.70)

где - шумовой ток являющийся эмпирическим параметром фотоприёмника. Для фотоприёмников без внутреннего усиления ограничивается в основном токами поверхностной утечки ().

При <G> = 100-50 ток  и определяется типом, материалом и конструкцией фотоприёмника. Для кремниевых p - i - n фотодиодов  , для лавинных

, NEP являются функцией полосы пропускания системы.

Для широкополосного усиления малых фототоков (А) при низких порогах чувствительности применяются преимущественно два типа электронных усилителей: трансимпедансный и интегрирующий.

 


Информация о работе «Анализ погрешностей волоконно-оптического гироскопа»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 206582
Количество таблиц: 2
Количество изображений: 63

Похожие работы

Скачать
67879
12
0

... большие габариты, малый КПД, потребность во внешнем устройстве накачки являются основными причинами, по которым этот источник не используется в современных ВОСП. Практически во всех волоконно-оптических системах передачи, рассчитанных на широкое применение, в качестве источников излучения сейчас используются полупроводниковые светоизлучающие диоды и лазеры. Для них характерны в первую очередь ...

Скачать
30892
0
6

... за счет использования двигателя стабилизации меньших габаритов, имеющего меньший момент сухого трения вокруг оси вращения и меньший коэффициент демпфирования. Габаритные размеры гиростабилизатора телекамеры с наружным кардановым подвесом оказываются меньше, чем с внутренним, т.к. в последнем случае для получения достаточных рабочих углов поворота платформы необходимо выполнение подвеса по ...

Скачать
50223
0
3

... , подобных квантовым точкам, обещает большую точность и снижение стоимости путем использования методов производства, разработанных для полупроводниковой промышленности [2].   Приложения современных нанотехнологии в медицине Сегодня мы еще довольно далеки от описанного Фейнманом микроробота, способного через кровеносную систему проникнуть внутрь сердца и произвести там операцию на клапане. ...

0 комментариев


Наверх