2.2. Определение скоростного запаса глубины.
Основные теоретические предпосылки определения скоростного запаса глубины (динамической просадки) базируются на теореме Бернулли, в соответствии с которой, зная скорость потока стесненной мелководьем или бровками канала жидкости можно определить динамическую просадку судна (1.12). Скорость стесненного потока для выражения (1.12) определяется решением кубического уравнения [56]
V31-V1(V2+2g(SK-Sm)/BK)+2gVSK/BK=0
где: sK - площадь сечения канала, м;
Sm - площадь подводной части миделя, м2;
После преобразований по методу Кордано решение этого уравнения примет следующий вид:
V1=4/3 * [V2+2g(H-BcT/BK)]cos2*
*{1/3 * arccos(-51VH)[V2+2g H-BcT/BK)]+/3} (2.35.)
В исследованиях Г.И.Сухомела, Г.Е.Павленко и других предлагаются различные методы определения скорости стесненного потока в форме постоянных коэффициентов и их функциональных зависимостей от размеров судна, режимов его движения и характеристик водного пути. В соответствии с этим формулы скоростного запаса глубины в общем случае можно представить линейными зависимостями от скорости хода [1, 7, 14, 27, 33] :
4=KV1V (2.36.)
квадратичными [1,3,34,9,10,11,14,15,16,49,42,35,58-63,71,18,64, 19,20,21,22,47,23,40,24,25,41,27,28,29,38,31,26,37,66,67,68]
4=KV2V2 (2.37.)
кубическими [57,48]
4=KV3V3 (2.38.)
и более сложными степенными функциями с дробными степенями [3, 5,13,48,35,31,30,37,66]
4=KVfxf(V) (2.39.)
где:
Kvi- постоянные или функциональные коэффициенты характеристик судна и водного пути, дающие размерность запаса глубины в метрах
В анализируемой литературе, как правило, целью применения методов определения динамической просадки судна является описание и исследование процессов в целом для решения задач проектирования, и наиболее характерные переменные, подверженные более быстрому изменению для конкретного судна (скорость, осадка и т.п.), входят в расчетные выражения не всегда в явном виде. Это затрудняет их оперативное применение судоводителями для выбора безопасной трассы следования из-за сложности вычислений. Поэтому одной из задач настоящего исследования является приведение исходных методов к более простому и явному виду расчетных формул типа ( 2.36.)-(2.39.) .
При линейной зависимости скоростного запаса глубины от скорости хода функциональный коэффициент в выражении (2.36.) определяется в зависимости от длины судна из специальной таблицы, предложенной П.К.Божичем [1,24,27,33], данные которой со средней квадратической погрешностью 9х10 аппроксимируются выражением
Kv1= 0,00034L + 0,045 . (2.40.)
В этих же работах [24,27] обосновывается применение упрощенной формулы П.К.Божича, предложенной М.Плакидой, в которой
функциональный коэффициент постоянный
KV1= 0,079 , (2.41.)
что соответствует судам длиной 75-120 м.
Из таблиц "Дополнения N 1" к Нормам [43] данный коэффициент будет также постоянным и равным
КV1 = 0,095 . (2.42.)
Из выражений коэффициентов (2.40.)- (2.42.) видно, что будет наблюдаться явное расхождение значений скоростного запаса глубины по формуле (2.36.).
В работе [12] скоростной запас глубины определяется вне зависимости от скорости хода по осадке судна
4 = (0,02 - 0,06)Т , (2.43.)
что не соответсвует самому понятию " скоростной запас глубины".
К линейным зависимостям относятся также формулы определения скоростного запаса глубины В. В. Звонкова, используемые в работах [7,14,64,27] при движении на мелководье
4=Kd(1- V/V1 –0.125T/H)H (2.44.)
при движении в канале
4=Kd(1- V/V1 –Sm/SK)H (2.45.)
где:
Кd - коэффициент, учитывающий дифферент судна на ходу.
В дополнении к выражению (2.36.) в формулах (2.44.) ,(2.45.) имеются слагаемые не содержащие скорости хода, но определяющие условия протекания жидкости стесненного потока.
Коэффициент ходового дифферента, применяемый также в формулах, полученных по методологии Г.И.Сухомела, определяется из таблиц [1,10,11,14,49,40,24,25,27,38,37], которые в работе [34] аппроксимировались прямыми линиями.
Более детальный анализ показал, что эти зависимости имеют гиперболический характер и со средней квадратической погрешностью 0,03 аппроксимируются выражением:
Kd=2.48BC/L + 0.77 (2.46.)
Наибольшее количество формул скоростного запаса глубины имеют квадратическую зависимость от скорости (2.37.). Одной из основных методологических основ этих формул является формула Г.И.Сухомела [1,10,11,14,49,40,24,25,27,38,37], функциональный коэффициент для которой примет вид:
KV2=Kd(K2-1)/2g при 1.4 Н/Т
KV2=Kd(K2-1)(H/T)1/2/2g при 1.4 < Н/Т
... равна 380 кН. Это и есть усилие, на которое следует подбирать буксирный трос. 4. Разработка буксирного устройства и кранцевой защиты для обеспечения буксировки аварийного судна транспортным судном 4.1 Буксирное устройство на ледоколах При проектировании буксирного устройства и кранцевой защиты для транспортного судна я основывался на принципиальной схеме буксирного устройства судов ...
... употребляемых для связи между ледоколом и проводимыми судами», которые ежегодно публикуются в выпуске № 1 извещений мореплавателям Гидрографического управления Министерства обороны. Успеху предстоящего плавания во льдах будет в значительной мере способствовать получение предварительной ледовой информации по району плавания, предварительная прокладка намеченного пути следования, изучение местных ...
... вблизи берега или ошвартованных у причалов. Поэтому при получении сообщения о землетрясении и возможном возникновении цунами судам следует немедленно уходит в море. 1.6 Океанографическая характеристика района плавания Колебания уровня и приливы Побережье: Колебания уровня обусловлены в основном приливно-отливными явлениями, сейшами, сгонами и нагонами. Приливная волна распространяется с юга ...
... контрольного сличения более чем на 2% от глубины, то промер, выполненный между данным контрольным сличением и предыдущим, должен быть переделан. На прибрежном промере контрольные сличения производят не менее одного раза в сутки на глубинах не более 30—40 м в характерных местах суточного продвига работ, а также при возникновении сомнений в правильности показаний эхолота. Глубины для сличения ...
0 комментариев