2. Расчёт статического коэффициента передачи тока в схеме с общей базой.
, (2,29)
где h21Б – статический коэффициент передачи тока в схеме с общей базой;
h21Э – статический коэффициент передачи тока в схеме с общим эмиттером.
3. Расчёт постоянной составляющей тока коллектора.
, (2,30)
где IК0 - постоянная составляющая тока коллектора, мА;
IЭ0 – постоянная составляющая тока эмиттера, мА;
h21Б – статический коэффициент передачи тока в схеме с общей базой.
проверяем условие IК0< IДОП. Условие выполняется.
4. Расчёт постоянной составляющей коллекторного напряжения.
, (2,31)
где UКЭМИН – остаточное напряжение на коллекторе, 0,5…1 В;
Uн - напряжение в нагрузке, В.
проверяем условие UК0< UДОП. Условие выполняется.
5. Расчёт резистора RЭ
, (2,32)
где RЭ – сопротивление резистора RЭ, Ом;
Uпит - напряжение питания, В;
IЭ0 – постоянная составляющая тока эмиттера, мА;
UК0 - постоянная составляющая коллекторного напряжения, В.
6. Расчет тока в цепи базы.
, (2,33)
h21Э – статический коэффициент передачи тока в схеме с общим эмиттером;
IЭ0 – постоянная составляющая тока эмиттера, А.
7. Расчет сопротивлений делителя, R1, R2.
, (2,34)
где UПИТ - напряжение питания, В;
IБ0 ток - в базе транзистора, А.
, (2,35)
где UR2 - падение напряжения на резисторе R2, В;
UБ0 - напряжение в базе транзистора, В;
URЭ - падение напряжения на резисторе RЭ, В.
, (2,37)
где UR2 - падение напряжения на резисторе R2, В;
IБ0 - ток в базе транзистора, А;
R2 – сопротивление резистора R2, Ом.
R1 = RД – R2, (2,38)
где R1 – сопротивление резистора R1, Ом;
R2 – сопротивление резистора R2, Ом;
RД – сопротивление делителя в цепи базы, Ом.
R1 = 11764,5 – 7435,3 = 4329,2
8. Расчёт крутизны вольтамперной характеристики транзистора.
, (2,39)
где S - крутизна вольтамперной характеристики транзистора, А/В;
h21Э – статический коэффициент передачи тока в схеме с общим эмиттером;
h11 - входное сопротивление транзистора, Ом.
9. Расчёт коэффициента усиления каскада.
, (2,40)
где S - крутизна вольтамперной характеристики транзистора, А/В;
RЭ – сопротивление резистора RЭ, Ом.
10. Расчёт конденсатора С1
, (2,41)
где fc – частота усиливаемого сигнала, Гц;
R1 – сопротивление резистора R1, Ом;
R2 – сопротивление резистора R2, Ом.
... высокую точность и временную стабильность испытательного сигнала. Элементную базу таких ГИС составляют цифровые микросхемы. 1 Постановка задачи Спроектировать генератор испытательных сигналов. Устройство должно обеспечивать: 1. Формирование белого и черного полей. 2. Формирование шести или двенадцати вертикальных полос с градацией яркости. 3. ...
... , позади диска Нипкова (рис. 2) располагалась лампа, которая изменениями яркости свечения и формировала изображение: точка за точкой, строка за строкой, кадр за кадром. Рис.2. Телевизор Нипкова Уже в 20-е годы двадцатого века (1920-1922) начитаются первые, пока - нерегулярные, телевизионные трансляции. На современные телевизоры те первые аппараты были похожи меньше всего. Скорее это ...
... рисунков в формате А0-А1 со скоростью 10-30 мм/с. Фотонаборный аппарат Фотонаборный аппарат можно увидеть только в солидной полиграфической фирме. Он отличается своим высоким разрешением. Для обработки информации фотонаборный аппарат оборудуется процессором растрового изображения RIP, который функционирует как интерпретатор PostScript в растровое изображение. В отличие от лазерного принтера в ...
... более дорогостоящими, нежели обычные рентгеновские системы, однако по мере развития компьютерной техники и систем визуализации находят все более широкое применение. Цифровая рентгенодиагностика обеспечивается компьютерной технологией.Дисплей Блок долговременной памяти Устройство документирования Компьютер + память изображенияИнтерфейс данныхПриемник изображения Пациент Рентгеновский аппарат ...
0 комментариев