2.1.4 ОПРЕДЕЛЕНИЕ ПОЛНЫХ ПЕРЕГРЕВОВ ЭЛЕМЕНТОВ
Полный перегрев элемента равен сумме собственного перегрева и перегревов, вызванных влиянием остальных элементов схемы.
Температура элементов с учетом влияния других элементов составит:
ti = toc + Qni
t1=70,46oC, t2=78,50oC, t3=72,14oC, t4=72,14oC,t5=70,80oC
1
Температура элементов таблица
Источник влияния | Элемент, на который влияет | ||||
1 | 2 | 3 | 4 | 5 | |
1 2 3 4 5 | 0,20 0,197 0,006 - 0,6 10-3 | 0,3710-3 8,40 0,076 0,4710-3 0,3710-5 | - 0,3710-4 2,126 0,016 0,1710-5 | - 0,7710-4 0,016 2,126 0,1710-5 | 0,156710-3 0,14710-2 0,0888 0,8888 0,60 |
Итого | 0,457 | 8,477 | 2,142 | 2,142 | 0,779 |
0
КОНСТРУКТИВНЫЙ РАСЧЕТ ПЕЧАТНОЙ ПЛАТЫ
Материалы, используемые в качестве оснований для печатных плат (ПП), должны обладать совокупностью определенных свойств. К их числу относятся высокие электроизоляционные свойства, достаточная механическая прочность и др. Все эти свойства должны быть стабильными при воздействии агрессивных сред и изменяющихся условий. Кроме того, материал платы должен обладать хорошей сцепляемостью с токопроводящим покрытием, минимальным короблением в процессе производства и эксплуатации. Если платы изготавливаются из листового материала, то последний должен допускать возможность обработки резанием и штамповкой.
В качестве материала ПП используем листовой фольгированный материал - стеклотекстолит фольгированный марки СФ 2-50-2,0 ГОСТ 10316-70.
Выбор данного материала объясняется назначением и условиями работы микромодуля. Печатные платы из стеклотекстолита имеют
нужную устойчивость к механическим, вибрационным, климатическим
воздействиям по сравнению с платами из гетинакса. Физико-механические и электрические свойства сведены в таблицу
Таблица 2 Физико-механические свойства стеклотекстолита
Показатели | СФ | 2 |
1.Плотность с фольгой, г/см2 2.Предел прочности на растяжение, кг/см2 3.Удельное поверхностное электрическое сопротивление, Ом 4.Тангенс угла диэлектрических потерь при частоте 106Гц 5.Диэлектрическая проницаемость | 1,9-2,9 2000 1010 0,07 6 |
Размеры плат не рекомендуется брать более 240х360 мм при обычных и 120х180 мм при малогабаритных деталях. Это связано с тем, что при больших габаритных размерах ПП увеличивается длина печатного проводника, чем снижается его прочность, снижается сила сцепления печатного проводника с изоляционным материалом, что требуется затем дополнительное сцепление путем предусмотрения дополнителных контактных площадок и отверстий. Из-за этого увеличиваются паразитные связи, что неблагоприятно сказывается на параметры устройства (помехи, пульсации, паразитные связи, наводки и т.д.). Одновременно снижается механическая жесткость печатной платы.
Для устранения этого эффекта рекомендуется и целесообразно более квадратная и прямоугольная форма (рекомендуемое соотношение сторон по ОСТ4 ГО.070.011 - 1:1; 1:2; 2:3; 2:5).
Платы всех размеров рекомендуется выполнять с плотностью монтажа, соответствующей классу А. К этому классу относятся платы, у которых ширина проводников и расстояние между ними в узких местах находятся в пределах 0,5-0,6 мм.
Принимается площадь всех элементов 80,6 см2, а коэффициенты плотности монтажа равным 0,7, получаем максимальную площадь печатной платы равной 116 см2.
Исходя из особенностей конструкции блока, а именно: ограничение размеров в целях достижения наименьших габаритов микромодуля, печатная плата модуля имеет размеры и форму, изображенную на рисунке
Форма и размеры платы
Зная габариты платы, можно перейти к компоновке элементов на ПП с учетом необходимых зазоров между элементами и рационального их размещения, для снижения паразитных связей и наводок.
Выбираем шаг координатной сетки 1,25 мм согласно ГОСТ 20317-62 и отраслевого стандарта ОСТ 4.ГО.070.011.
Центры монтажных и переходных отверстий расположены в узлах координатной сетки.
РАСЧЕТ НАДЕЖНОСТИ МИКРОМОДУЛЯ.
Надежность - свойство изделия сохранять свои параметры в заданных пределах и в заданных условиях эксплуатации в течение определенного промежутка времени.
Общую надежность можно принимать как совокупность трех свойств: безотказность, восстанавливаемость, долговечность.
Безотказность - свойство системы непрерывно сохранять работоспособность в течение заданного времени в определенных условиях эксплуатации. Она характеризуется закономерностями возникновения отказов.
Восстанавливаемость - это приспособленность системы к обнаружению и устранению отказов с учетом качества технического обслу-
живания. Она характеризуется закономерностями устранения отказов.
Долговечность - свойство системы длительно сохранять работоспособность в определенных условиях. Количественно характеризуется продолжительностью периода практического использования системы от начала эксплуатации до момента технической и экономической целесообразности дальнейшей эксплуатации.
Методы повышения надежности в зависимости от области их применения можно разделить на три основные группы: производственная, схемно-конструкторские, эксплуатационные.
К производственным методам относятся: получение однородной продукции, стабилизация технологии, анализ дефектов и механизмов
отказов, разработка методов испытаний, определение зависимости
показаний надежности от интенсивности внешних воздействий.
К схемно-конструкторским методам относятся: выбор подходящих условий нагрузки, унификация узлов и элементов, разработка схем с допусками на отклонение параметров элементов, резервирова-
ние, контроль работы оборудования, введение запаса работы во времени.
К эксплуатационным методам относятся: сбор информации надежности, увеличение интенсивности восстановления, профилактические мероприятия, граничные испытания.
Наиболее ответственным этапом по удовлетворению требований эксплуатационной надежности является этап проектирования.
Насколько всесторонне учтены при проектировании и изготовлении опытного образца условия производства и эксплуатации с точки зре-
ния безопасности в работе, ремонтопригодности, долговечности аппаратуры, настолько последняя будет обладать эксплуатационной надежностью.
К критериям безопасности относятся: вероятность безотказной работы, частота отказов, интенсивность отказов, среднее время
безотказной работы, наработка на отказ.
Интенсивностью отказов называется отношение числа отказавших изделий в единицу времени к среднему числу изделий, продолжавших исправно работать. Среднем временем безотказной работы называет-
ся арифметическое время исправной работы каждого изделия. В теории вероятности применяются различные законы распределения. Наиболее простым распределением потока отказов во времени является эксплуатационный закон распределения, который рассматривает последовательность отказов во времени, как простейший поток событий.
Расчет вероятности безотказной работы, когда отказы комплектующих элементов распределяются по экспоненциальному закону производится по следующим формулам:
P(t) = e t 7e -t7...7e -t
где -lS - суммарная интенсивная отказов РЭА,
li - интенсивность отказов комплектующих изделий и элементов.
Интенсивность отказов комплектующих элементов с учетом условий эксплуатаций производится по формуле:
l = lp 7 KB
KB - коэффициент, учитывающий условия эксплуатации элементов для каждой группы аппаратуры. Для наземной стационарной и возимой аппаратуры KB=1.
Произведем ориентировочный расчет надежности; он основывается на следующих допущениях:
- интенсивность отказов всех элементов не зависит от времени; т.е. в течение срока службы у элементов, входящих в изделие, отсутствующих старение, износ;
- отказы элементов изделия являются случайным событием;
- все элементы работают одновременно, коэффициент нагрузки Кн=0,6.
Исходные данные для расчета вероятности безотказной работы сведены в таблицу
Расчет ведется по формуле:
P(t) = e- t
l - суммарная интенсивность отказов элементов и узлов;
t - время работы микромодуля.
Среднее время работы до первого отказа определяется по формуле:
1
To = ----- (час) l S
Расчет вероятности безотказной работы будем вести для двух температур:
для нормальной t1=20оC и для максимальнойt2=50оC, указанной в ТУ.
Для определения интенсивности отказов элементов при t2=50оC вводятся поправочные коэффициенты f. Тогда интенсивность отказов будет равна:
lt = lt 7 f
Данные интенсивности отказов сводим в таблицу
Среднее время безотказной работы при двух температурах будет равно:
при t=20оC T = 15243 час
при t=50оC Т = 11031 час
Для построения зависимости безотказной работы от времени наработки микромодуля составим таблицу вероятности безотказной работы для двух температур.
1
Данные интенсивности отказов таблица
Наимено- вание элементов | Кол-во N | Kн | li710-6 1/час | Кн li710-6 | ||
20оC | 50оC | 20оC | 50оC | |||
Резисторы | 50 | 0,6 | 0,04 | 0,4 | 8,64 | 19,8 |
Транзисторы | 36 | 0,6 | 0,5 | 0,8 | 4,2 | 6,51 |
Диоды | 16 | 0,7 | 0,2 | 1,47 | 3,15 | 3,75 |
Конденсаторы | 57 | 0,5 | 1,33 | 1,33 | 9,98 | 14,59 |
Дроссели | 4 | 1 | 2,1 | 2,1 | 2,1 | 5,88 |
Трансформаторы | 2 | 1 | 2,1 | 2,1 | 4,2 | 11,76 |
Микросхемы | 3 | 0,7 | 0,85 | 0,85 | 1,79 | 3,32 |
Стабилитрон | 5 | 0,7 | 0,5 | 0,5 | 1,75 | 8,82 |
Пайки | 120 | 0,7 | 0,05 | 0,1 | 4,2 | 4,2 |
Провода | 18 | 0,7 | 0,12 | 0,12 | 1,5 | 1,5 |
Прокладки резиновые | 8 | 0,7 | 0,03 | 0,03 | 0,17 | 0,17 |
Корпус микромодуля | 1 | 0,6 | 0,003 | 0,003 | 0,018 | 0,018 |
S 65,6 | S 90,7 |
Вероятность безотказной работы таблица
Среднее время работы микромодуля t(час) | Вероятность ----------- t1=20оC | безотказной работы | --------------------- | t2=50оC | | | |
1000 | 0,962 | | 0,951 | | |
2000 | 0,951 | | 0,945 | | |
3000 | 0,943 | | 0,933 | | |
4000 | 0,935 | | 0,875 | | |
5000 | 0,910 | | 0,829 | | |
6000 | 0,875 | | 0,784 | | |
7000 | 0,846 | | 0,745 | | |
8000 | 0,814 | | 0,702 | | |
9000 | 0,785 | | 0,668 | | |
10000 | 0,760 | | 0,632 | |
0
График зависимости вероятности безотказной работы от времени работы микромодуля
Из таблицы видно, что вероятность безотказной работы микромодуля при t1=20оC значительно выше, а приt2=50оC ниже. Это обусловлено тем, что при повышении температуры повышается интенсивность отказов радиоэлементов, т.е. увеличивается разброс их параметров и следовательно расстройка всего микромодуля. Из приведенного расчета можно сделать вывод, что микромодуль имеет хорошую надежность, т.е. можно гарантировать 15240 часов безотказной работы микромодуля при нормальной температуре, 11031 часа при повышенной температуре. Если же исходить из реальных условий работы микромодуля, то можно сказать, что его надежность намного выше, т.к. при расчете принималось, что в работе находятся все элементы микромодуля при максимальной нагрузке, т.е. микромодуль работал в наихудших условиях.
Исходя из полученных расчетных данных видно, что наработка на отказ при заданной надежности 0,8 составляет 3200 часов. Таким образом, разработанная конструкция микромодуля соответствует требованию задания.
Приведенный расчет на ЭВМ внесен в приложение 3.
ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
АНАЛИЗ ТЕХНОЛОГИЧНОСТИ
МИКРОБЛОКА ПИТАНИЯ РЭА
Анализ технологичности конструкции микромодуля будем проводить определяя основные показатели. Стандартами ЕСТПП устанавливается обязательность отработки КД изделий на технологичность на
вех стадиях производства РЭА.
Количественная оценка технологичности конструкции основана на системе показателей технологичности, которые являются критери-
ями технологичности.
Согласно ГОСТ 14201-83 оценку технологичности конструкции будем проводить по показателям, достигнутым в процессе отработки конструкции на технологичность. Показатели новой конструкции будем сравнивать с показателями базовой.
Для всех видов изделий при отработке конструкции на технологичности ставятся следующие задачи:
- Снижение трудоемкости изготовления изделия. Она зависит от многих факторов, главным из которых следует считать стандартизацию, унификацию составных частей изделия и их элементов, типизацию технологических процессов изготовления и ремонта изделия.
- Стандартизация составных частей или деталей (крепеж). При использовании стандартных составных частей изделия создаются предпосылки для их централизованного производства, обеспечивают их взаимозаменяемость при выходе из строя в процессе сборки, исключает прогоночные работы, упрощает техническое обслуживание изделия, снижает его себестоимость.
- Унификация составных частей изделия. Эта задача включает: использование в проектируемых изделиях составных частей конструкции, отработанных на технологичность, использование покупных изделий.
- Возможность использования типовых технологических процессов сборки, обработки, контроля. Применение типовых технологических процессов создает условия для повышения уровня их механизации и автоматизации, сокращения сроков изготовления.
Для определения расчетных коэффициентов технологичности составляем таблицу , в которую вносим данные о проектируемом и ба-
зовом изделии.
1
Таблица
Расчет технологичности конструкции
Д Е Т А Л И | ||||||||||||
Специально изготовленные | Нормализованные NА,NК | Покупные | ||||||||||
18 | 21 | 13 | 17 | 3 | 3 | - | - | 5 | 7 | - | - | |
55 | 60 | 33 | 40 | 35 | 50 | - | - | 75 | 152 | - | - |
0
Нормализованный коэффициент
Nшн +Nшнс
Кн= -----------
N ш -Nшк
75 152
Кн пр = ------ = 0,46Кн баз = ------ = 0,6
198-35 302-50
N ш - общее количество по спецификации
Nшн - не крепежные
Nшнс- стандартные
Nшк - крепежные
Коэффициент заимствования
Nшз
Кз = ----------
N ш -Nшк
Nшз - заимствованные
Кз пр = 0,2Кз баз = 0,16
Коэффициент повторяемости
NД
Кпов = -----
N ш
NД - количество одноименных деталей
Кпев.пр = 0,19Кпов.баз = 0,16
Коэффициент преемственности и освояемости
Nшп + Nшз + Nшнк + Nшп
Кп = ----------------------
N ш - Nк
Kпр.пр = 0,65
Kпр.баз = 0,76
Коэффициент конструктивного оформления
N осн
Кконст = ---------
N ш -Nшк
81
Kконст.пр.= ------- = 0,49
198-35
Кконст.баз= ------- = 0,45
302-35
Коэффициент технологичности конструкции
С2
Ктехн = ---- 7 100 %
С1
где С1-С2 - себестоимость базовой и проектируемой конструкции, руб
340
Ктехн = ----- ~ 1,2
270
При сравнении производственно-технологических характеристик проектируемого и базового изделий видно, что они в основном выше, чем у проектируемого изделия. Однако коэффициенты преемственности и нормализованный у проектируемого изделия несколько ниже за счет широкого применения в проектируемом изделии микроэлектроники.
... в помещении представлена на рисунке 4.1 Рисунок 4.1 - Схема размещения светильников в аудитории № 209. Заключение В работе проведено исследование использования программ дистанционного обучения для подготовки учебно-методической документации, описаны их положительные стороны и выявлены основные проблемы. В результате проведенного исследования разработано web-приложение "R@Learning ...
... метод доступа с передачей полномочия. Охарактеризовать метод множественного доступа с разделением частоты. Какие существуют варианты использования множественного доступа с разделением во времени? Лекция 5.ЛВС и компоненты ЛВС Компьютерная сеть состоит из трех основных аппаратных компонент и двух программных, которые должны работать согласованно. Для корректной работы устройств в сети их нужно ...
... . Становление рыночной экономики в России породило ряд проблем. Одной из таких проблем является обеспечение безопасности бизнеса. На фоне высокого уровня криминализации общества, проблема безопасности любых видов экономической деятельности становится особенно актуальной. Информационная безопасность среди других составных частей экономической безопасности (финансовой, интеллектуальной, кадровой, ...
... рынке интерес к IP-телефонии возрастает также благодаря тому, что сетевое оборудование приобрело некоторые черты УАТС - в первую очередь это касается проблемы питания IP-телефонов, работающих в полностью сетевом (т. е. без привычных УАТС, даже поддерживающих IP) окружении. Пионером в этом направлении выступает, естественно, компания Cisco Systems. Она весьма оперативно модернизировала свое ...
0 комментариев