Курсовая работа.
Студент: Трошев Р.А.
Балтийский Государственный Технический Университет им Д.Ф.Устинова.
Кафедра «Детали машин»
Санкт-Петербург
2005 г
Подшипники качения для условия сухого трения, материалы и конструктивные особенности.
Введение.
Директивами XXIII съезда КПСС по пятилетнему плану развития народного хозяйства СССР на 1966 – 1970гг. предусматривается выпуск машин и приборов новых конструкций, предназначенных для эксплуатации в условия низких температур, коррозионных сред, вакуума, а так же расширение производства специальных подшипников. Эти подшипники, способные работать в условия сухого трения, позволяют получать на обрабатывающих машинах продукцию высокой кондиционности (текстильное, обувное, пищевое, фармацевтическое и другое оборудование), удешевляют и упрощают конструкции машин и агрегатов и их обслуживание, повышают надежность и долговечность машин, работающих в тяжелых производственных условиях, что дает значительный экономических эффект.
Применение подшипников сухого трения стало возможно только с появлением новых материалов, позволяющих использовать их в трущихся парах без смазки.
Применение подшипников сухого трения.
Сухое трение появляться при взаимодействии поверхностей, не разделенных слоем жидкой смазки. В случае очень тонкого слоя жидкости на поверхности (порядка 0,1мк) или адсорбированных капель во время взаимодействия возникает граничное трение, переходящее с увеличением толщины смазочного слоя в полужидкостное. При полужидкостном поверхности не полностью разделены и могут касаться выступами шероховатости. С увеличением толщины смазочного слоя поверхности полностью разделяются жидкой смазкой и не вступают в контакт друг с другом. Такое трение, определяемое силами вязкости, называется жидкостным.
Работа машин и агрегатов современной техники происходит со всё возрастающими скоростями и давлениями, высокими и низкими температурами в вакууме. Повышаются требования к надежности и долговечности наряду со стремлением к упрощению и удешевлению разрабатываемых конструкций, к кондиционности вырабатываемых продуктов.
Одним и средств обеспечения работы машин в этих условиях является использование подшипников сухого трения, некоторые области применения которых рассмотрены ниже.
Известно, что масла и смазочные материалы в настоящее время работоспособны в диапазоне температур примерно –30 до +300°С. При более высоких температурах (600°С и выше) подшипники жидкостного трения не обеспечиваются смазкой. В этих условиях подшипники сухого трения, позволяющие работать с температурами свыше 400°С, значительно у прощают конструкции машин, а иногда являются единственными приемлемыми, с другой стороны конструкция машин, например насосов для перекачивания сжиженных газов, происходит при криогенных температурах (-183 ¼ - 196°С). Криогенные жидкости (азот, кислород и т.п.) не обладают достаточными смазывающими свойствами из-за малой вязкости и низкой температуры кипения, а отсутствие лучших смазок ставит задачу использования подшипников, способных работать со смазкой сжиженными газами и режиме сухого трения.
Во время работы подшипников с высокими нагрузками нет условий для образования гидродинамической смазки. Смазочное вещество выдавливается из зоны трения, особенно когда нагрузка приближается к пределу текучести материала.
Низкие скорости в подшипнике также вызывают нарушение гидродинамической смазки, так как давление в смазочном клине оказывается недостаточным для восприятия нагрузки. Разрыв масленой пленки приводит в зацеплению микронеровностей и задирам поверхностей. В этих условиях для уменьшения задиров, улучшения приработки и снижение износа целесообразно применять подшипники сухого трения (узлы трения оборудования химической промышленности, автомобилей, прокатных станков и т.п.).
Использование обычных смазок в подшипниках, работающих в вакууме рентгеновских спектрометров, электровакуумных устройств и другой аппаратуре неприемлемо. Вследствие высокой упругости паров большинство жидкостей и смазок в вакууме испаряется и теряет свои смазывающие свойства. Действие температуры еще более усугубляет этот процесс. В данном случае никакие уплотнения не способны поддержать вакуум на определенном уровне. Поэтому применение подшипников без подвода смазок в условиях вакуума является актуальным вопросом вакуумной техники.
В ряде отраслей химической промышленности (пищевой, текстильной, химической) применение минеральных смазок приводит к загрязнению вырабатываемого продукта маслом, нарушению его стерильности.
В химической промышленности по технологическим соображениям загрязнения продукта минеральной смазкой иногда совершенно недопустимо (попадание масла в кислород, фтористый водород и т.п.)
Подшипники качения со смазкой маловязкими средами (керосин, бензин, углеводороды, вода) используются в агрегатах химической промышленности, в топливной аппаратуре и т.п. маловязкие жидкости обладают плохой смазывающей способностью. В процессе эксплуатации возможен переход к полусухому и сухому трению, что значительно снижает долговечность и надежность опорных узлов. Применение самосмазывающих подшипников в этом случае повышается работоспособность опор, позволяет использовать технологические жидкости для смазки.
Самосмазывающиеся материалы для подшипников становятся все более необходимыми, так как иногда работа современных машин протекает при экстремальных климатических условиях. Обычные смазочные масла и консистентные смазки требуют особого контроля в случае изменения температуры. Резкие суточные колебания температуры приводят к быстрому разрушению минеральных смазок, вследствие чего усложняется обслуживание машин.
Работа подшипников дорожных и сельскохозяйственных машин, автомобилей, химических аппаратов и машин и др. в агрессивной среде требует подбора износоустойчивых материалов, способных противостоять абразивному изнашиванию и поглощать абразивные частицы. К ним относятся самосмазывающиеся композиции и материалы, работающие без минеральных смазок, мало эффективных из-за загрязнения абразивной пылью.
В подшипниковых узлах оборудования атомных реакторов, работающих на трение в облучающих устройствах, бытовых машин, киноаппаратуры и т.п. повторная смазка совсем исключена ввиду невозможного доступа обслуживающего персонала во время работы или она затруднена. В этих случаях применение подшипников сухого трения облегчает эксплуатацию оборудования.
Стоимость маслосистемы для жидкой смазки может быть относительно высокой по сравнению с самой машины, а габариты сравнительно большими. Применение уплотнительных устройств для разделения рабочих и масляных полостей (газ и масло, пар и масло и т.д.) усложняет конструкцию. Это особенно относится к малогабаритным индивидуальным установкам (микронагнетателям, герметическим газодувкам и т.п.). Здесь использование подшипников сухого трения дает высоких экономических эффект от замены дефицитных материалов подшипников жидкостного трения (бронза, баббит и т.п.) на более дешевые самосмазывающиеся материалы и создание более простой конструкции машины.
Вопрос применения подшипников сухого трения затрагивает многие отрасли современного машиностроения. К нему все больше обращаются конструкторы, создающие новую технику.
Теория сухого трения.
Работу подшипников без смазки следует рассматривать как взаимодействие поверхностей при сухо трении. В этом случае в отличие от подшипников жидкостного трения контактирующие поверхности не разделены искусственно созданной масляной пленкой, полностью устраняющей контакт между ними. Однако нельзя считать, что не смазанные маслом поверхности вступают в непосредственный контакт друг с другом.
В реальных условиях поверхность материала адсорбирует газы, пары, влагу окружающей среды, а также зачастую бывает покрыта окисным слоем. Даже незначительно присутствие этих веществ совершенно изменяет картину трения.
Боуден с сотрудниками измерили коэффициенты трения для чистых металлов. С их поверхности атомы воздуха и окисные пленки были удалены нагреванием в вакууме. Полученные значения коэффициента трения колебались от 1 до 5, а для некоторых пар достигали 10 и выше, тогда как в обычных условиях они составляли менее 1. Поэтому при нормальных условиях работы пары трения всухую, окисные слои и адсорбированные газы предотвращают контакт, выступая в роли сухой смазки. Таким же образом действуют и специально внесенные в зону трения твердые и газообразные вещества, разделяющие контактирующие поверхности и уменьшающие трение и износ. В связи с этим сухое трение в реальных условиях следует рассматривать как взаимодействие трущихся поверхностей с твердыми и газообразными смазками, что целиком относятся к подшипникам без смазки, самосмазывающимся и подшипникам сухого трения.
Выбор материалов для подшипников сухого трения.
Вследствие недостаточно обоснованного выбора материалов для подшипников и смазочных материалов сроки службы машин и агрегатов уменьшаются, возрастает количество ремонтных работ, а также потери вырабатываемого продукта из-за дополнительных простоев оборудования. От выбранного материала зависит конструктивное оформление подшипников скольжения. Конструкции подшипников разрабатываются исходя из свойств материалов таким образом, чтобы свести до минимума или полностью устранить вредное влияние отрицательных характеристик материала (хрупкость, низкую теплопроводность, гигроскопичность, нестабильность размеров во времени и др.) и наиболее полно использовать низкий коэффициент трения и высокую износостойкость материала. Конструктивные приемы являются эффективным средством повышения срок службы подшипников.
При выборе материала для подшипников сухого трения основное значение имеет их износостойкость, а, следовательно, срок службы. Износ опорных поверхностей подшипников сверх допустимой величины нарушает точность взаимного расположения вала с рабочими органами и корпуса, приводит его динамической неустойчивости и вибрации, возможности разрушения подшипника на ходу. Износ увеличивается с повышением давления (контактных напряжений), а коэффициент трения снижается либо остается постоянным до критического значения, соответствующего катастрофическому износу. Физико-механические свойства материала подшипника должны обеспечивать наиболее высокую износостойкость и упругий контакт при трении, минимальный коэффициент трения, отсутствие склонности к задиру, хорошую прирабатываемость. Кроме этого, материал должен обладать достаточно механической прочностью, технологичностью и стойкостью к воздействию окружающей среды.
Величина предельно допустимой температуры для выбираемого материала, при которой происходит разрушение или резкое падение механических характеристик, должна быть больше температуры окружающей среды не менее чем на 50 - 80°С. Характер динамической нагрузки должен соответствовать прочностным свойствам выбранного материала. Не допускается применение хрупких материалов, имеющих низкую ударную вязкость (менее 5кгс × см/см²) при ударных и вибрационных нагрузках. Применение материала должно быть экономически обосновано как в сфере изготовления, так и в сфере эксплуатации.
Материал подшипника должен быть малодефицитным, его технологическая обработка проста и доступна. Производство и механическая обработка некоторых материалов для подшипников сухого трения связана со сложной технологией, требующей специального оборудования. Их изготовление возможно лишь на специальных участках. Это необходимо учитывать при конструировании машин, требующих переодических ремонтов в нестационарных условиях.
Для повышения износостойкости подшипников большое значение имеют мероприятия, связанные с обслуживанием и эксплуатацией: подача смазки, отсутствие утечек (плотность системы), соблюдение теплового режима, борьба с абразивным изнашиванием в условиях сухого и граничного трения с принятием мер к устранению абразивных частиц из зоны трения. Тепловой режим должен быть связан с теплостойкостью материала и должен обеспечиваются подачей охлаждающей воды, холодного смазочного вещества, циркуляцией рабочей жидкости, тепловой изоляцией и т.п.
Материалы для подшипников сухого трения выбираются в зависимости от своей рабочей среды, её температуры и давления, от скорости скольжения по валу, от реакции в опоре (нагрузки), от теплоотвода из зоны трения и требующего срока службы в эксплуатации.
Материалы, применяемые для подшипников, подразделяются на следующие группы:
А – металлические материалы (коррозионно-стойкие стали и сплавы, углеродистые и легированные стали, чугуны, цветные металлы, наплавочные сплавы);
Б – материалы на основе углерода;
В – неметаллические высокотвердые материалы;
Г – материалы на основе полимеров, в том числе металлополимерные.
Материалы для подшипников рекомендуется выбирать в следующем порядке, произведя затем проверочный расчет подшипника. В зависимости от значения и химической стойкости в рабочей среде выбирают для элементов трущейся пары материала или группы А с коррозионной стойкостью не ниже 4 балла по ГОСТ 13819-68 (скорость коррозии 0,01 – 0,05 мм/год) или Б,В,Г у которых не более ±3% изменения массы за 1000 часов испытаний в рабочей среде (по ГОСТ 12020-72).
Не допускаются к применению материалы, которые в рабочей среде подвержены коррозионному растрескиванию, межкристаллитной, щелевой и структурной коррозии. Изменение литейных величин образца при испытаниях не должно выводить их за пределы поля допусков, предусмотренного в конструкторской документации, относительное изменение механических свойств при испытаниях в течение 1000ч не должно выходить за пределы ±10%, растрескивание образцов при испытании не допускается.
С технологической точки зрения наиболее эффективным является выбор материала шеек вала с повышенной исходной твердостью и износостойкостью поверхностного слоя, рациональной шероховатостью, высокими жесткостью и усталостной прочностью вала и сохранением соосности опор. Многочисленными исследованиями установлено, что при сухом трении и при работе на малых скоростях скольжения более твердые материалы изнашиваются меньше, чем пластичные.
Ресурс работы подшипника определяется из формулы:
Т = h/u ;
, где h – максимально допустимая величина износа подшипника, устанавливаемая при конструировании машин, мм ; u – скорость изнашивания при промышленных испытаниях, мм/ч.
К подшипникам качения, предназначенным для работы в режиме сухого трения, современная техника предъявляет особые требования. В условиях вакуума, повышенной температуры, коррозионных сред смазывание подшипников минеральными смазывающими веществам невозможно, а материалы подшипников должны дополнительно обладать коррозионной стойкостью в различных жидкостях, парах и газах, не обладающих смазывающими свойствами, но являющихся рабочими средами и проникающие к подшипникам.
... необходимо отнести большие демпфирующие способности при действии вибраций и ударов, диэлектричность, антикоррозийность, технологичность изготовления, небольшую массу и стоимость. Недостатками пластмассовых опор скольжения прежде всего являются невысокая износостойкость, низкая теплопроводность, гигроскопичность и нестабильность размеров. Цилиндрические опоры в отличие от конических мало ...
... задачи является конструкторско-исследовательским и решает не только конструкторские задачи разработки и применения муфт сцепления с тарельчатой пружиной, но и рассматривает влияние установки данного узла на технические и эксплуатационные показатели трактора в целом. Трактора класса 2 мощностью 120 л.с. предназначены для выполнения полного спектра сельскохозяйственных работ от подготовки почвы ...
... многоступенчатых редукторов. В общем случае на конце вала может быть установлена шестерня, звёздочка или шкив. Основные нагрузки на валы. Расчёт валов на сопротивление усталости. Основным видом разрушения является усталостное. Необходимо установить характер цикла напряжений. Напряжения изгиба изменяются по симметричному циклу. Напряжения кручения изм ...
... - дальнейшее развитие, совершенствование и разработка новых технологических методов обработки заготовок деталей машин, применение новых конструкционных материалов и повышение качества обработки деталей машин. Наряду с обработкой резанием применяют методы обработки пластическим деформированием, с использованием химической, электрической, световой, лучевой и других видов энергии. Классификация ...
0 комментариев